Parallel manipulators (PMs) with redundant actuation are attracting increasing research interest because they have demonstrated improved stiffness and fewer singularities. This paper proposes a new redundantly actuated parallel manipulator that has three degrees-of-freedom (DOFs) and four limbs. The proposed manipulator is a 2UPR-2PRU parallel manipulator (where P represents an actuated prismatic joint, R represents a revolute joint, and U represents a universal joint) that is actuated using four prismatic joints; two of these joints are mounted on the base to reduce the movable mass. Mobility analysis shows that the moving platform has two rotational DOFs and one translational DOF. First, the inverse displacement solution, velocity, and singularity analyses are discussed. Next, the local transmission index (LTI) and the good transmission workspace are used to evaluate the motion/force transmissibility of the 2UPR-2PRU parallel manipulator. Finally, the parameter-finiteness normalization method (PFNM) is used to produce an optimal design that considers the good transmission workspace. It is thus shown that the motion/force transmission of the proposed manipulator is improved by optimizing the link parameters.

References

1.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2005
, “
Wrench-Closure Workspace of Six-DOF Parallel Mechanism Driven by 7 Cables
,”
Trans. CSME/de la SCGM
,
29
(
4
), pp.
541
552
.
2.
Bouchard
,
S.
,
Gosselin
,
C. M.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), p. 011010.
3.
Garg
,
V.
,
Carretero
,
J. A.
, and
Nokleby
,
S. B.
,
2009
, “
A New Method to Calculate the Force and Moment Workspaces of Actuation Redundant Spatial Parallel Manipulators
,”
ASME J. Mech. Rob.
,
1
(
3
), p. 031004.
4.
Wang
,
L. P.
,
Wu
,
J.
,
Wang
,
J. S.
, and
You
,
Z.
,
2009
, “
An Experimental Study of a Redundantly Actuated Parallel Manipulator for a 5-DOF Hybrid Machine Tool
,”
IEEE/ASME Trans. Mechatronics
,
14
(
1
), pp.
72
81
.
5.
Kim
,
J.
,
Park
,
F. C.
,
Ryu
,
S. J.
,
Kim
,
J.
,
Hwang
,
J. C.
,
Park
,
C.
, and
Iurascu
,
C. C.
,
2001
, “
Design and Analysis of a Redundantly Actuated Parallel Mechanism for Rapid Machining
,”
IEEE Trans. Rob. Autom.
,
17
(
4
), pp.
423
434
.
6.
Merlet
,
J.-P.
,
1996
, “
Redundant Parallel Manipulators
,”
Lab. Rob. Autom.
,
8
(
1
), pp.
17
24
.
7.
Kim
,
S.
,
1997
, “
Operational Quality Analysis of Parallel Manipulators With Actuation Redundancy
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Albuquerque, NM, Apr. 20–25, pp.
2651
2656
.
8.
Wang
,
J. S.
,
Wu
,
J.
,
Li
,
T. M.
, and
Liu
,
X.-J.
,
2009
, “
Workspace and Singularity Analysis of a 3-DOF Planar Parallel Manipulator With Actuation Redundancy
,”
Robotica
,
27
(
01
), pp.
51
57
.
9.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularities and Improves Dexterity
,”
ASME J. Mech. Rob.
,
130
(
12
), p.
124501
.
10.
Kim
,
S. H.
,
Jeon
,
D.
,
Shin
,
H. P.
,
In
,
W.
, and
Kim
,
J.
,
2009
, “
Design and Analysis of Decoupled Parallel Mechanism With Redundant Actuator
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
93
99
.
11.
Zhao
,
Y.
, and
Gao
,
F.
,
2009
, “
Dynamic Formulation and Performance Evaluation of the Redundant Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
25
(
4
), pp.
770
781
.
12.
Li
,
Q. C.
,
Zhang
,
N. B.
, and
Wang
,
F. B.
,
2017
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011007
.
13.
Marquet
,
F.
,
Kurt
,
S.
,
Company
,
O.
, and
Pierrot
,
F.
,
2001
, “
ARCHI: A Redundant Mechanism for Machining With Unlimited Rotation Capacities
,”
Proc. ICRA Budapest
,
25
(
4
), pp.
683
689
.
14.
Wang
,
D.
,
Fan
,
R.
, and
Chen
,
W. Y.
,
2014
, “
Performance Enhancement of a Three-Degree-of-Freedom Parallel Tool Head Via Actuation Redundancy
,”
Mech. Mach. Theory
,
71
(1), pp.
142
162
.
15.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Rob. Res.
,
28
(
28
), pp.
1216
1227
.
16.
Xie
,
F. G.
,
Liu
,
X.-J.
, and
Zhou
,
Y. H.
,
2014
, “
Optimization of a Redundantly Actuated Parallel Kinematic Mechanism for a 5-Degree-of-Freedom Hybrid Machine Tool
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
12
), pp.
1630
1641
.
17.
Xie
,
F. G.
,
Liu
,
X.-J.
, and
Zhou
,
Y. H.
,
2014
, “
Development and Experimental Study of a Redundant Hybrid Machine With Five-Face Milling Capability in One Setup
,”
Int. J. Precis. Eng. Manuf.
,
15
(
1
), pp.
13
21
.
18.
Wu
,
J.
,
Wang
,
J. S.
,
Wang
,
L. P.
, and
Li
,
T. M.
,
2007
, “
Dexterity and Stiffness Analysis of a Three-Degree-of-Freedom Planar Parallel Manipulator With Actuation Redundancy
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
8
), pp.
961
969
.
19.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3- RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
5
(
4
), p. 041003.
20.
Wang
,
C. Z.
,
Fang
,
Y. F.
,
Guo
,
S.
, and
Chen
,
Y. Q.
,
2015
, “
Design and Kinematic Analysis of Redundantly Actuated Parallel Mechanisms for Ankle Rehabilitation
,”
Robotica
,
33
(
2
), pp.
366
384
.
21.
In
,
W.
,
Lee
,
S.
,
Jeong
,
J.
, and
Kim
,
J.
,
2008
, “
Design of a Planar-Type High Speed Parallel Mechanism Positioning Platform With the Capability of 180 Degrees Orientation
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
421
424
.
22.
Gardner
,
J.
,
Kumar
,
V.
, and
Ho
,
J.
,
1989
, “
Kinematics and Control of Redundantly Actuated Closed Chains
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Scottsdale, AZ, May 14–19, pp.
418
424
.
23.
Kumar
,
V. R.
, and
Gardner
,
J. F.
,
1990
, “
Kinematics of Redundantly Actuated Closed Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
2
), pp.
269
274
.
24.
Shin
,
H.
,
Kim
,
S.
,
Jeong
,
J.
, and
Kim
,
J.
,
2012
, “
Stiffness Enhancement of a Redundantly Actuated Parallel Machine Tool by Dual Support Rims
,”
Int. J. Precis. Eng. Manuf.
,
13
(
9
), pp.
1539
1547
.
25.
Shin
,
H.
,
Lee
,
S.
,
Jeong
,
J. I.
, and
Kim
,
J.
,
2013
, “
Antagonistic Stiffness Optimization of Redundantly Actuated Parallel Manipulators in a Predefined Workspace
,”
IEEE/ASME Trans. Mechatronics
,
18
(
3
), pp.
1161
1169
.
26.
Xie
,
F. G.
,
Liu
,
X.-J.
,
Chen
,
X.
, and
Wang
,
J. S.
,
2011
, “
Optimum Kinematic Design of a 3-DOF Parallel Kinematic Manipulator With Actuation Redundancy
,”
International Conference on Intelligent Robotics and Applications
(
ICIRA
), Aachen, Germany, Dec. 6–8, pp.
250
259
.
27.
Xie
,
F. G.
,
Liu
,
X.-J.
, and
Wang
,
J. S.
,
2011
, “
Performance Evaluation of Redundant Parallel Manipulators Assimilating Motion/Force Transmissibility
,”
Int. J. Adv. Rob. Syst.
,
8
(
5
), pp.
113
124
.
28.
Stoughton
,
R. S.
, and
Arai
,
T.
,
1993
, “
A Modified Stewart Platform Manipulator With Improved Dexterity
,”
IEEE Trans. Rob. Autom.
,
9
(
2
), pp.
166
173
.
29.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
30.
Kock
,
S.
, and
Schumacher
,
W.
,
1998
, “
A Parallel x-y Manipulator With Actuation Redundancy for High-Speed and Active-Stiffness Applications
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Leuven, Belgium, May 16–20, pp.
2295
2300
.
31.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), p.
199
.
32.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulators
,”
International Conference on Advanced Robotics
(
ICAR
), Pisa, Italy, June 19–22, Vol.
2
, pp.
1130
1135
.
33.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
34.
Gosselin
,
C. M.
,
1992
, “
The Optimum Design of Robotic Manipulators Using Dexterity Indices
,”
Rob. Auton. Syst.
,
9
(
4
), pp.
213
226
.
35.
Kim
,
S.-G.
, and
Ryu
,
J.
,
2003
, “
New Dimensionally Homogeneous Jacobian Matrix Formulation by Three End-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
731
736
.
36.
Carretero
,
J. A.
,
Nahon
,
M. A.
, and
Podhorodeski
,
R. P.
,
2000
, “
Workspace Analysis and Optimization of a Novel 3-DOF Parallel Manipulator
,”
Int. J. Rob. Autom.
,
15
(
4
), pp.
178
188
.
37.
Altuzarra
,
O.
,
Salgado
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
,
2006
, “
Point-Based Jacobian Formulation for Computational Kinematics of Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1407
1423
.
38.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
39.
Shi
,
J.
,
Wang
,
Y. H.
,
Zhang
,
G.
, and
Ding
,
H.
,
2013
, “
Optimal Design of 3-DOF PKM Module for Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1879
1889
.
40.
Ball
,
R. S.
,
1998
,
A Treatise on the Theory of Screws
,
Cambridge University Press
, New York.
41.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
42.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
J. Eng. Ind.
,
95
(
2
), pp.
589
597
.
43.
Liu
,
X.-J.
,
Wang
,
L. P.
,
Xie
,
F. G.
, and
Bonev
,
I. A.
,
2010
, “
Design of a Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021009
.
44.
Liu
,
X.-J.
, and
Wang
,
J. S.
,
2007
, “
A New Methodology for Optimal Kinematic Design of Parallel Mechanisms
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1210
1224
.
45.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J. S.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p. 041001.
46.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.
47.
Grübler
,
M.
,
1883
, “
Allgemeine Eigenschaften der Zwangläufigen Ebenen Kinematischen Ketten
,”
Civilingenieur
,
29
, pp.
167
200
.
48.
Kutzbach
,
K.
,
1929
, “
Mechanische Leitungsverzweigung, Ihre Gesetze und Anwendungen
,”
Machinenbau
,
8
(
21
), pp.
710
716
.
49.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
50.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
51.
Tao
,
D. C.
,
1964
,
Applied Linkage Synthesis
,
Addison-Wesley
,
Reading, MA
.
52.
Stock
,
M.
, and
Miller
,
K.
,
2003
, “
Optimal Kinematic Design of Spatial Parallel Manipulators: Application to Linear Delta Robot
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
292
301
.
53.
Ryu
,
J.
, and
Cha
,
J.
,
2003
, “
Volumetric Error Analysis and Architecture Optimization for Accuracy of HexaSlide Type Parallel Manipulators
,”
Mech. Mach. Theory
,
38
(
3
), pp.
227
240
.
You do not currently have access to this content.