Distraction osteogenesis is a method of generating new bone formation by the gradual application of tensile stress across an osteotomy site (a complete cut through the bone). Internal or intraoral distraction devices have become the most common clinical apparatus in craniofacial distraction osteogenesis, although actuating the distraction devices relies upon manual length adjustment under patients’ compliance, introducing inconvenience and potential error in the procedure. To realize a fully implantable automatic distraction device, we propose a device design comprising a continuous miniature motor-driven distractor with a controller and an on-board lithium-ion battery. A benchtop prototype was fabricated to demonstrate the device’s structural design capable of transmitting sufficient loads with sufficient strain accuracy; it is capable of using a battery selection algorithm to determine an appropriate electrochemistry, temperature, sealability, and form factor and a control algorithm and a testing protocol with a laboratory-fabricated control circuit. This new distraction osteogenesis device enables completely automated and continuous distraction by the application of a low strain magnitude with multiple steps potentially leading to enhanced osteogenic activity.

1.
McCarthy
,
J. G.
,
Schreiber
,
J.
,
Karp
,
N.
,
Thorne
,
C. H.
, and
Grayson
,
B. H.
, 1992, “
Lengthening the Human Mandible by Gradual Distraction
,”
Plast. Reconstr. Surg.
0032-1052,
89
, pp.
1
8
.
2.
Swennen
,
G.
,
Schliephake
,
H.
,
Dempf
,
R.
,
Schierle
,
H.
, and
Malevez
,
C.
, 2001, “
Craniofacial Distraction Osteogenesis: A Review of the Literature. Part I: Clinical Studies
,”
Int. J. Oral Maxillofac Surg.
0901-5027,
30
, pp.
89
103
.
3.
Swennen
,
G.
,
Dempf
,
R.
, and
Schliephake
,
H.
, 2002, “
Cranio-Facial Distraction Osteogenesis: A Review of the Literature. Part II: Experimental Studies
,”
Int. J. Oral Maxillofac Surg.
0901-5027,
31
, pp.
123
135
.
4.
Meyer
,
U.
,
Meyer
,
T.
,
Wiesmann
,
H. P.
,
Stratmann
,
U.
,
Kruse-Lösler
,
B.
,
Maas
,
H.
, and
Joos
,
U.
, 1999, “
The Effect of Magnitude and Frequency of Interfragmentary Strain on the Tissue Response to Distraction Osteogenesis
,”
J. Oral Maxillofac Surg.
0278-2391,
57
, pp.
1331
1339
.
5.
Kessler
,
P.
,
Neukam
,
F. W.
, and
Wiltfang
,
J.
, 2005, “
Effects of Distraction Forces and Frequency of Distraction on Bony Regeneration
,”
Br. J. Oral Maxillofac Surg.
0266-4356,
43
, pp.
392
398
.
6.
Schmelzeisen
,
R.
,
Neumann
,
G.
, and
von der Fecht
,
R.
, 1996, “
Distraction Osteogenesis in the Mandible With a Motor-Driven Plate: A Preliminary Animal Study
,”
Br. J. Oral Maxillofac Surg.
0266-4356,
34
, pp.
375
378
.
7.
Ploder
,
O.
,
Mayr
,
W.
,
Schnetz
,
G.
,
Unger
,
E.
,
Ewers
,
R.
, and
Plenk
,
H.
, Jr.
, 1999, “
Mandibular Lengthening With an Implanted Motor-Driven Device: Preliminary Study in Sheep
,”
Br. J. Oral Maxillofac Surg.
0266-4356,
37
, pp.
273
276
.
8.
Idelsohn
,
S.
,
Pena
,
J.
,
Lacroix
,
D.
,
Planell
,
J. A.
, and
Gil
,
F. J.
, 2004, “
Continuous Mandibular Distraction Osteogenesis Using Superelastic Shape Memory Alloy (SMA)
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
15
, pp.
541
546
.
9.
Lekston
,
Z.
,
Drugacz
,
J.
, and
Morawiec
,
H.
, 2004, “
Application of Superelastic NiTi Wires for Mandibular Distraction
,”
Mater. Sci. Eng., A
0921-5093,
378
, pp.
537
541
.
10.
Wiltfang
,
J.
, and
Kebler
,
P.
, 2001, “
Continuous Bone Distraction Using a Microhydraulic Cylinder: An Experimental Study in Minipigs
,”
Br. J. Oral Maxillofac Surg.
0266-4356,
39
, pp.
2
7
.
11.
Visbisky
,
M.
,
Stinebring
,
R. C.
, and
Holmes
,
C. F.
, 1989, “
An Approach to the Reliability of Implantable Lithium Batteries
,”
J. Power Sources
0378-7753,
26
, pp.
185
194
.
12.
MacLean
,
G. K.
,
Aiken
,
P. A.
,
Adams
,
W. A.
, and
Mussivand
,
T.
, 1995, “
Preliminary Evaluation of Rechargeable Lithium-Ion Cells for an Implantable Battery Pack
,”
J. Power Sources
0378-7753,
56
, pp.
69
74
.
13.
Drews
,
J.
,
Fehrmann
,
G.
,
Staub
,
R.
, and
Wolf
,
R.
, 2001, “
Primary Batteries for Implantable Pacemakers and Defibrillators
,”
J. Power Sources
0378-7753,
97–98
, pp.
747
749
.
14.
Schmidt
,
C. L.
, and
Skarstad
,
P. M.
, 2001, “
The Future of Lithium and Lithium-Ion Batteries in Implantable Medical Devices
,”
J. Power Sources
0378-7753,
97–98
, pp.
742
746
.
15.
Owens
,
B. B.
, 1986,
Batteries for Implantable Biomedical Devices
,
Plenum
,
New York
.
16.
Cook
,
K. A.
, and
Sastry
,
A. M.
, 2005, “
An Algorithm for Selection and Design of Hybrid Power Supplies for MEMS With a Case Study of a Micro-Gas Chromatograph System
,”
J. Power Sources
0378-7753,
140
, pp.
181
202
.
17.
Cook
,
K. A.
,
Albano
,
F.
,
Nevius
,
P. E.
, and
Sastry
,
A. M.
, 2006, “
POWER (Power Optimization for Wireless Energy Requirements): A MATLAB Based Algorithm for Design of Hybrid Energy Systems
,”
J. Power Sources
0378-7753,
159
, pp.
758
780
.
18.
Robinson
,
R. C.
,
O’Neal
,
P. J.
, and
Robinson
,
G. H.
, “
Mandibular Distraction Force: Laboratory Data and Clinical Correlation
,”
J. Oral Maxillofac Surg.
0278-2391,
59
, pp.
539
544
2001.
19.
Suzuki
,
E. Y.
, and
Suzuki
,
B.
, 2009, “
A Simple Mechanism for Measuring and Adjusting Distraction Forces During Maxillary Advancement
,”
J. Oral Maxillofac Surg.
0278-2391,
67
, pp.
2245
2253
.
20.
Burstein
,
F. D.
,
Lukas
,
S.
, and
Forsthoffer
,
D.
, 2008, “
Measurement of Torque During Mandibular Distraction
,”
J. Craniofac Surg.
1049-2275,
19
(
3
), pp.
644
647
.
21.
Crane
,
N. B.
,
Gray
,
J. M.
,
Mendelowitz
,
S. E.
,
Wheeler
,
J. W.
, and
Slocum
,
A. H.
, 2004, “
Design and Feasibility Testing of a Novel Device for Automatic Distraction Osteogenesis of the Mandible
,”
Proceedings of the ASME Design Engineering Technical Conference
, Vol.
2A
, p.
611
.
22.
Guerrero
,
C. A.
, and
Bell
,
W. H.
, 1999, “
Intra-Oral Bone Distraction Device
,” U.S. Patent No. 5,885,290.
23.
Suzuki
,
T.
,
Hirayama
,
T.
,
Aihara
,
K.
, and
Hirohata
,
Y.
, 1991, “
Experimental Studies of Moderate Temperature Burns
,”
Burns
0305-4179,
17
(
6
), pp.
443
451
.
24.
Linden
,
D.
, 2002, “
Selection and Application Of Batteries
,”
Handbook of Batteries
,
McGraw-Hill Professional
,
New York
.
25.
Okamoto
,
E.
,
Nakamura
,
M.
,
Akasaka
,
Y.
,
Inoue
,
Y.
,
Abe
,
Y.
,
Chinzei
,
T.
,
Saito
,
I.
,
Isoyama
,
T.
,
Mochizuki
,
S.
,
Imachi
,
K.
, and
Mitamura
,
Y.
, 2007, “
Analysis of Heat Generation of Lithium Ion Rechargeable Batteries Used in Implantable Battery Systems for Driving Undulation Pump Ventricular Assist Device
,”
Artif. Organs
0160-564X,
31
(
7
), pp.
538
541
.
You do not currently have access to this content.