Abstract

This paper presents outcomes from research studies conducted independently at Purdue University as part of a collaborative project with the staff of Pacific Northwest National Laboratory (PNNL). Research work focused on assessments for meeting the challenge of monitoring actinide content in spent nuclear fuel (SNF) via characteristic neutron emissions [from spontaneous fission and (α,n) reactions] using the centrifugally tensioned metastable fluid detector (CTMFD) sensor technology using an inert organic decafluoropentane (DFP)(C5H2F10) sensing fluid. Traditional detectors readily saturate and/or cannot monitor neutron emissions under the expected 1012:1 gamma to neutron radiation environment. A challenge problem was posed to examine if a CTMFD could operate reliably over 1 h for conducting neutron spectroscopy at a 1 m standoff from a 30-y cooled SNF, in a ∼1012:1 gamma:neutron intensity environment resulting in a 150 Gy (15 kRad) accumulated dose for the CTMFD. The impacts on reliable operability were studied separately under expected gamma radiation energy and intensity for possible effects of: (i) radiolysis in the CTMFD sensing fluid from absorbed (<1.5 MeV) gamma radiation; (ii) photoneutron contamination signals from < 3 MeV high energy gamma photons interacting with the sensing fluid; and, (iii) malfunction of CTMFD component electronics from the absorbed gamma radiation. A Co-60 gamma irradiator was used for dose accumulation in the CTMFD electronic components and sensing fluids. A 14 MeV DT accelerator was used with a NaCl target to produce 3–4 MeV photons from activated 37S (via. neutron absorption in 37Cl) at SNF-commensurate intensities from SNF at 1-m standoff. Our examinations revealed the absence of any significant impact on CTMFD performance for meeting and exceeding the challenge problem metric. That is, we validated for no discernible impact of: 3–4 MeV gamma-produced photoneutrons when combined with a fission neutron source and radiolysis in the DFP sensing fluid through a 150 Gy absorbed dose. Past research results at Purdue University have validated for survivability of the key electronic components for absorbed gamma doses above the targeted 150 Gy level. This paper also provides extended evidence for survivability (from radiolysis) at higher gamma doses through 750 Gy with a borated DFP-sensing fluid formulation-based CTMFD.

References

1.
Knolls
,
G. F.
,
2000
,
Radiation Detection and Measurement
, 3rd ed.,
Wiley. Inc.
,
Hoboken, NJ
.
2.
Tsoufinidis
,
N.
, and
Landsberger
,
S.
,
2015
,
Measurement and Detection of Radiation
, 4th ed.,
CRC Press Taylor and Francis Group
,
Milton Park, UK
.
3.
Bean
,
R.
,
2007
, “
Aqueous Processing Material Accountability Instrumentation
,”
Idaho National Laboratory
, Report No. INL/EXT-07-13431.
4.
Cipiti
,
B. B.
,
2005
, “
Advanced Instrumentation for Reprocessing
,”
Sandia National Laboratories
,
Albuquerque
, Report No. SAND2005.
5.
Durst
,
P. C.
,
2007
, “
Advanced Safeguards Approaches for New Reprocessing Facilities
,”
Pacific Northwest National Laboratory
,
Richland, WA
, Report No. PNNL-16674.
6.
Guenther
,
R. J.
,
Blahnik
,
D.
,
Campbell
,
T.
,
Jenquin
,
T.
,
Mendel
,
J.
,
Thomas
,
L.
, and
Thornhill
,
C.
,
1988a
, “
Characterization of Spent Fuel Approved Testing material-ATM-103
,”
Pacific Northwest National Laboratory
,
Richland, WA
, Report No. PNNL-5109-103.
7.
Guenther
,
R. J.
,
Blahnik
,
D.
,
Campbell
,
T.
,
Jenquin
,
T.
,
Mendel
,
J.
,
Thomas
,
L.
, and
Thornhill
,
C.
,
1988b
, “
Characterization of Spent Fuel Approved Testing material-ATM-106
,”
Pacific Northwest National Laboratory
,
Richland, WA
, Report No. PNNL-5109-103.
8.
IAEA
,
2002
,
IAEA Safeguards Glossary
, 2001 ed., (International nuclear verification series No. 3),
International Atomic Energy Agency
,
Vienna, Austria
.
9.
Taleyarkhan
,
R. P.
,
Lapinskas
,
J.
,
Archambault
,
B.
,
Webster
,
J. A.
,
Grimes
,
T. F.
,
Hagen
,
A.
,
Fisher
,
K.
,
McDeavitt
,
S.
, and
Charlton
,
W.
,
2013
, “
Real-Time Monitoring of Actinides in Chemical Nuclear Fuel Reprocessing Plants
,”
Chem. Engr. Res. Des.
,
91
(
4
), pp.
688
702
.10.1016/j.cherd.2013.02.010
10.
Taleyarkhan
,
R. P.
,
Lapinskas
,
J.
, and
Xu
,
Y.
,
2008
, “
Tension Metastable Fluids and Nanoscale Interactions With External Stimuli – Theoretical-Cum-Experimental Assessments and Nuclear Engineering Applications
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1820
1827
.10.1016/j.nucengdes.2007.10.019
11.
Taleyarkhan
,
R. P.
,
Hagen
,
A.
,
Sansone
,
A.
, and
Archambault
,
B.
,
2016
, “
Femto-to-Macro Scale Interdisciplinary Sensing With Tensioned Metastable Fluid Detectors
,”
IEEE-SENSORS
, Orlando, FL, Oct. 30–Nov. 3, pp.
1
1
.10.1109/ICSENS.2016.7808563
12.
Webster
,
J. A.
,
Perez-Nunez
,
D.
, and
Taleyarkhan
,
R. P.
,
2016
, “
Qualification of CTMFD Sensors for Gamma-Beta Blind Functionality in SNF Reprocessing Facilities
,”
Proceedings of American Nuclear Soc. Adv. Non-Proliferation Tech. and Policy
, Santa Fe, NM, Sept. 25–30, pp.
122
125
.
13.
Archambault
,
B. C.
,
Webster
,
J. A.
,
Grimes
,
T. F.
,
Fischer
,
K. F.
,
Hagen
,
A. R.
, and
Taleyakhan
,
R. P.
,
2015
, “
Advancements in the Development of a Directional-Position Sensing Fast Neutron Detector Using Acoustically Tensioned Metastable Fluids
,”
Nucl. Instrum. Methods Res. Phys. A
,
784
, pp.
176
183
.10.1016/j.nima.2014.10.051
14.
Boyle
,
N.
,
Archambault
,
B.
,
Hemesath
,
M.
, and
Taleyarkhan
,
R. P.
,
2019
, “
Radon and Progeny Detection Using TMFDs
,”
Health Phys.
,
117
(
4
), pp.
434
442
.10.1097/HP.0000000000001066
15.
Archambault
,
B.
,
Hagen
,
A.
,
Grimes
,
T.
, and
Taleyarkhan
,
R. P.
,
2018
, “
Large-Array Special Nuclear Material Sensing With TMFDs
,”
IEEE Sens.
,
18
(
19
), pp.
7868
7874
.10.1109/JSEN.2018.2845344
16.
Hume
,
N.
,
Hagen
,
A.
,
Grimes
,
T.
,
Archambault
,
B.
,
Bakken
,
A.
, and
Taleyarkhan
,
R. P.
,
2020
, “
The MAC-TMFD: Novel Multi-Armed Centrifugally Tensioned Metastable Fluid Detector (Gamma-Blind) – Neutron-Alpha Recoil Spectrometer
,”
Nucl. Inst. Methods Phys. Res., A
,
949
(
2020
), p.
162869
.10.1016/j.nima.2019.162869
17.
Hemesath
,
M.
,
Boyle
,
N.
,
Archambault
,
B.
,
Lorier
,
T.
,
DiPrete
,
D.
, and
Taleyarkhan
,
R. P.
,
2022
, “
Actinide in Air (Rn-Progeny Rejected) Alpha Spectroscopy With Tensioned Metastable Fluid Detector
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
2
), p.
022001
.10.1115/1.4049729
18.
Taleyarkhan
,
R. P.
,
Archambault
,
B.
,
Sansone
,
A.
,
Grimes
,
T.
, and
Hagen
,
A.
,
2020
, “
Neutron Spectroscopy and H*10 Dosimetry With Tensioned Metastable Fluid Detectors
,”
Nucl. Inst. Methods Phys. Res., A
,
959
(
2020
), p.
163278
.10.1016/j.nima.2019.163278
19.
Taleyarkhan
,
R. P.
,
2020
, “
Monitoring Neutron Radiation in Extreme Gamma/X-Ray Radiation Fields
,”
Sensors
,
20
(
3
), p.
640
.10.3390/s20030640
20.
Harabagiu
,
C.
,
Boyle
,
N.
,
Archambault
,
B.
,
DiPrete
,
D.
, and
Taleyarkhan
,
R. P.
,
2022
, “
High Resolution Pu-239/240 Mixture Alpha Spectroscopy Using Centrifugally Tensioned Metastable Fluid Detector Sensor Technology
,”
J. Anal. At. Spectrom.
,
37
(
2
), pp.
264
277
.10.1039/D1JA00285F
21.
Ozerov
,
S.
,
Boyle
,
N.
,
Hoiughtalen
,
N.
, and
Taleyarkhan
,
R. P.
,
2022
, “
Real-Time Shielded and Unshielded Moving SNM Detection Using Large Array TMFDs
,”
IEEE Trans. Nucl. Sci.
,
69
(
8
), pp.
1945
1952
.10.1109/TNS.2022.3184844
22.
Ozerov
,
S.
,
Hagen
,
A.
,
Archambault
,
B.
,
Sansone
,
A.
,
Boyle
,
N.
,
Grimes
,
T.
,
Rancilio
,
N.
,
Plantenga
,
J.
, and
Taleyarkhan
,
R. P.
,
2022
, “
Clinac 6 MV X-Ray Facility Photo-Neutron/Fission Interrogations With TMFD Sensors
,”
Nucl. Inst. Methods Phys. Res. A
,
1029
(
2022
), p.
166395
.10.1016/j.nima.2022.166395
23.
Ozerov
,
S.
,
Boyle
,
N.
,
Harabagiu
,
C.
,
DiPrete
,
D.
,
Whiteside
,
T.
,
Boone
,
A.
,
Hadlock
,
D.
, et al.,
2022
, “
Ultra-Low to Moderate Intensity Spectrometric Neutron Dosimetry With H*10-TMFD vs ROSPEC, Eberline and Ludlum Detector Systems
,”
Proceedings of 65th Radiobioassy and Radiochemical Measurements Conference
, Atlanta, GA, Oct. 31–Nov. 4.
24.
Boyle
,
N.
,
Archambault
,
B.
, and
Taleyarkhan
,
R. P.
,
2020
, “
High Energy Photo-Neutron Interrogation of Uranium With TMFDs
,”
Sens. Transducers J.
,
245
(
6
), pp.
36
40
.https://www.sensorsportal.com/HTML/DIGEST/october_2020/Vol_245/P_3170.pdf
25.
Gauld
,
I. C.
,
Herman
,
G. W.
, and
Westfall
,
R. M.
,
2009
, “
ORIGEN-S: SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay and Associated Radiation Source Terms
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL/TM-2005/39.
26.
Hagen
,
A.
,
Archambault
,
B.
, and
Garcia
,
I.
,
2023
, “
Further Experimental Evidence of the Photon Insensitivity and Robustness of TMFDs in High Intensity or High Energy Photon Fields
,”
ASME J. Nucl. Eng. Radiat. Sci.
(accepted).
You do not currently have access to this content.