A coupled neutronics/thermal-hydraulics (N/T) three-dimensional code system SNTA is developed for supercritical water-cooled reactor (SCWR) core steady-state analysis by modular coupling the improved neutronics nodal methodological code and SCWR thermal-hydraulic subchannel code. The appropriate outer iteration coupling method and self-adaptive relaxation factor are proposed for enhancing convergence, stability, and efficiency of coupled N/T calculation. The steady-state analysis for the CSR1000 core is applied to verify SNTA. The results calculated by SNTA agreed well with those by CASIR and SRAC. SNTA is more efficient than CASIR and SRAC, where the neutronics modules are based on the finite-difference method. The numeric results show that SNTA can be applied to SCWR core steady-state analysis and core concept design.

References

1.
Yamaji
,
A.
,
Oka
,
Y.
, and
Koshizuka
,
S.
,
2006
, “
Three-Dimensional Core Design of High Temperature Supercritical-Pressure Light Water Reactor With Neutronics and Thermal-Hydraulic Coupling
,”
J. Nucl. Sci. Technol.
,
42
(
1
), pp.
8
9
.
2.
Anderson
,
M.
,
Hu
,
P.
,
Jain
,
R.
,
Seshadri
,
V.
,
Brooks
,
P.
,
Sridharan
,
K.
,
Wilson
,
P.
, and
Corradini
,
M.
,
2004
, “
Supercritical Water Nuclear Steam Supply System: Innovation in Materials, Neutronics and Thermal-Hydraulics
,” UW-Madison, Madison, WI,
No. DE-FG03-01SF22328
.
3.
Maraczy
,
C.
,
Hegyi
,
G.
,
Hordosy
,
G.
, and
Temesvari
,
E.
,
2011
, “
HPLWR Equilibrium Core Design With the KARATE Code System
,”
Prog. Nucl. Energy
,
53
(
3
), pp.
267
277
.
4.
Shen
,
W.
,
2012
, “
Assessment of the Traditional Neutron-Diffusion Core-Analysis Method for the Analysis of the Super Critical Water Reactor
,”
Ann. Nucl. Energy
,
45
, pp.
1
7
.
5.
Ma
,
Y.
,
Chai
,
X.
,
Wang
,
Y.
,
Pan
,
J.
, and
An
,
P.
,
2013
, “
Development of Coupled Neutronics/Thermal-Hydraulics CASIR Code System for SCWR Core Steady State
,”
Nucl. Power Eng.
,
34
(
1
), pp.
87
91
.
6.
Hu
,
Y.
, and
Zhao
,
X.
,
1998
, “
Advanced Nodal Green's Function Method on Neumann Boundary Condition
,”
J. Tsinghua Univ. (Sci. Technol.)
,
38
(
4
), pp.
17
21
.
7.
Shan
,
J.
,
Zhang
,
B.
,
Li
,
C.
, and
Leung
,
L.
,
2009
, “
SCWR Sub-Channel Code ATHAS Development and CANDU-SCWR Analysis
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1979
1987
.
8.
Wang
,
L.
,
Zhao
,
W.
,
Chen
,
B.
,
Yao
,
D.
, and
Yang
,
P.
,
2015
, “
Development of Three Dimensional Transient Analysis Code STTA for SCWR Core
,”
Ann. Nucl. Energy
,
78
, pp.
26
32
.
9.
Hu
,
Y.
,
Gan
,
D.
, and
Luo
,
J.
,
1995
, “
Pin Power Reconstruction Methodology of Nodal Coarse Mesh Calculations
,”
J. Tsinghua Univ. (Sci. Technol.)
,
35
(
3
), pp.
1
6
.
10.
Betts
,
C.
,
1994
,
Numerical Techniques for Coupled Neutronic/Thermal Hydraulic Nuclear Reactor Calculations
,
Oregon State University
,
Corvallis, OR
.
11.
Liu
,
S.
, and
Cai
,
J.
,
2013
, “
Convergence Analysis of Neutronic/Thermohydraulic Coupling Behavior of SCWR
,”
Nucl. Eng. Des.
,
265
(
6
), pp.
53
62
.
12.
Liu
,
X.
, and
Cheng
,
X.
,
2009
, “
Coupled Thermal-Hydraulics and Neutron-Physics Analysis of SCWR With Mixed Spectrum Core
,”
Prog. Nuclear Energy
,
52
(
7
), pp.
640
647
.
13.
Xia
,
B.
,
Yang
,
P.
,
Wang
,
L.
,
Ma
,
Y.
,
Li
,
Q.
,
Li
,
X.
, and
Liu
,
J.
,
2013
, “
Core Preliminary Conceptual Design of Supercritical Water-Cooled Reactor CSR1000
,”
Nucl. Power Eng.
,
34
(
1
), pp.
9
14
.
You do not currently have access to this content.