Abstract

In the context of improved safety requirements for Generation IV sodium-cooled fast reactors (SFR), an innovative severe accident mitigation scenario is being investigated. In the French frame of SFR research, the mitigation strategy consists of transfer tubes and a core catcher. The transfer tubes are dedicated to discharge molten fissile materials from the core center region and to guide them toward the core catcher where long-term cooling and subcritical state may be assured. The physical phenomena occurring during the discharge process are introduced in this paper. The current demonstration of the mitigation strategy uses best-estimate calculations with the reference computer code SIMMER. Previous analyses showed that the material discharge through the transfer tubes might be efficient; however, uncertainties of SIMMER approach are identified on the molten material mobility during the relocation process. It is related to a blockage formation due to particulate solid debris accumulation inside the transfer tube, in case of low energy accumulation in the degraded fuel, is believed to originate from the solid particle treatment in the code. As the performance of mitigation strategy strongly depends on the mobility of the relocating mixture, the most predictive behavior of particle flows is of great importance to SFR safety. Therefore, the SIMMER modeling of such flows is analyzed in this work. The first verification and validation test cases regarding the gravitational settling of particle clouds at varying volume fractions are presented. Recommendations for reactor calculations and first orientations for future research and development are highlighted.

References

1.
Kamiyama
,
K.
,
Konishi
,
K.
,
Sato
,
I.
,
Toyooka
,
J.
,
Matsuba
,
K.
,
Zuyev
,
V. A.
,
Pakhnits
,
A. V.
,
Vityuk
,
V. A.
,
Vurim
,
A. D.
,
Gaidaichuk
,
V. A.
,
Kolodeshnikov
,
A. A.
, and
Vassiliev
,
Y. S.
,
2014
, “
Experimental Studies on the Upward Fuel Discharge for Elimination of Severe Recriticality During Core-Disruptive Accidents in Sodium-Cooled Fast Reactors
,”
J. Nucl. Sci. Technol.
,
51
(
9
), pp.
1114
1124
.10.1080/00223131.2014.912566
2.
Serre
,
F.
,
Bertrand
,
F.
,
Journeau
,
C.
,
Suteau
,
C.
,
Verwaede
,
D.
,
Schmitt
,
D.
, and
Farges
,
B.
,
2015
, “
Status of the French R/D Program on the Severe Accident Issue to Develop Gen IV SFRs-15373
,”
The International Congress on Advances in Nuclear Power Plants Proceedings
, Nice, France, May 3–6, pp.
551
558
.
3.
Maschek
,
W.
,
Rineiski
,
A.
,
Suzuki
,
T.
,
Chen
,
X.
,
Mori
,
M.
,
Wang
,
S.
,
Tobita
,
Y.
,
Kondo
,
S.
,
Yamano
,
H.
,
Fujita
,
S.
,
Cadiou
,
T.
, and
Coste
,
P.
,
2007
, “
The SIMMER-III and SIMMER-IV Code Family: 2-D and 3-D Mechanistic Simulation Tools for Reactor Transients and Accidents
,” Technical Meeting on Use and Development of Coupled Computer Codes for the Analysis of Accidents at Nuclear Power Plants, Vienna, Austria, Nov. 26–28.
4.
French Alternative Energies and Atomic Energy Commission, Direction de l’énergie nucléaire,
2012
, “
CEA Nuclear Energy Division
4th Generation Sodium-Cooled Fast Reactors—The Astrid Technological Demonstrator,” GifsurYvette, France, p. 96, https://www.cea.fr/english/Documents/corporate-publications/4th-generation-sodium-cooled-fast-reactors.pdf
5.
Bachrata
,
A.
,
Trotignon
,
L.
,
Sciora
,
P.
, and
Saez
,
M.
,
2019
, “
A Three-Dimensional Neutronics—Thermalhydraulics Unprotected Loss of Flow Simulation in Sodium-Cooled Fast Reactor With Mitigation Devices
,”
Nucl. Eng. Des.
,
346
, pp.
1
9
.10.1016/j.nucengdes.2019.02.015
6.
Bertrand
,
F.
,
Marie
,
N.
,
Bachrata
,
A.
,
Brun-Magaud
,
V.
,
Droin
,
J. B.
,
Manchon
,
X.
,
Herbreteau
,
K.
,
Farges
,
B.
,
Carluec
,
B.
,
Poumerouly
,
S.
, and
Lemasson
,
D.
,
2018
, “
Status of Severe Accident Studies at the End of the Conceptual Design of ASTRID: Feedback on Mitigation Features
,”
Nucl. Eng. Des.
,
326
, pp.
55
64
.10.1016/j.nucengdes.2017.10.019
7.
Serre
,
F.
,
Bertrand
,
F.
,
Bachrata
,
A.
,
Marie
,
N.
,
Kubo
,
S.
,
Kamiyama
,
K.
,
Carluec
,
B.
,
Farges
,
B.
, and
Koyama
,
K.
,
2017
, “
France-Japan Collaboration on the Severe Accident Studies for ASTRID. Outcomes and Future Work Program
,”
Proceedings of International Congress on Advances in Nuclear Power Plants
, Minato, Tokyo, Apr., p. 9.
8.
Matsuo
,
E.
,
Sasa
,
K.
,
Koyama
,
K.
,
Yamano
,
H.
,
Kubo
,
S.
,
Marie
,
N.
,
Hourcade
,
E.
,
Bachrata
,
A.
,
Bertrand
,
F.
, and
Dirat
,
J. F.
,
2019
, “
Coolability Evaluation of Debris Bed on Core Catcher in a Sodium-Cooled Fast Reactor
,”
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27)
, Tsukuba, Japan, p.
5
.
9.
Bachrata
,
A.
,
Fichot
,
F.
,
Repetto
,
G.
,
Quintard
,
M.
, and
Fleurot
,
J.
,
2012
, “
Code Simulation of Quenching of a High Temperature Debris Bed: Model Improvement and Validation With Experimental Results
,”
ASME
Paper No. ICONE20-POWER2012-54221.10.1115/ICONE20-POWER2012-54221
10.
Bachrata
,
A.
,
Bertrand
,
F.
,
Marie
,
N.
,
Edeline
,
A.
,
Kubota
,
R.
,
Kamiyama
,
K.
, and
Kubo
,
S.
,
2019
, “
Severe Accident Studies on the Mitigation Devices Efficiency in a SFR Core With SIMMER Code
,”
Proceedings of International Congress on Advances in Nuclear Power Plants
, Juan-les-Pins,12–15.
11.
Singh
,
S.
,
2019
, “Radioscopie X pour les interactions corium-sodium lors d'un scénario d'accident grave,” Ph.D. thesis,
Université Paris-Saclay
, Paris, France.
12.
Kondo
,
S.
, and
Tobita
,
Y.
,
2020
, “
Phase 1 Code Assessment of SIMMER-III, a Computer Program for LMFR Core Disruptive Accident Analysis
,” Japan Atomic Energy Agency, Tokai, Japan.
13.
Kamiyama
,
K.
,
Tobita
,
Y.
,
Suzuki
,
T.
, and
Matsuba
,
K.
,
2014
, “
Development of an Evaluation Methodology for Fuel Discharge in Core Disruptive Accidents of Sodium-Cooled Fast Reactors
,”
22nd International Conference on Nuclear Engineering
, Prague, Czech, July, pp.
698
706
.
14.
Clavier
,
R.
,
Chikhi
,
N.
,
Fichot
,
F.
, and
Quintard
,
M.
,
2015
, “
Experimental Investigation on Single-Phase Pressure Losses in Nuclear Debris Beds: Identification of Flow Regimes and Effective Diameter
,”
Nucl. Eng. Des.
,
292
, pp.
222
236
.10.1016/j.nucengdes.2015.07.003
15.
Maschek
,
W.
,
Roth
,
A.
,
Kirstahler
,
M.
, and
Meyer
,
L.
,
1992
, “
Simulation Experiments for Centralized Liquid Sloshing Motions
,” Kernforschungszentrum Karlsruhe, Karlsruhe, Germany.
16.
Aoyagi
,
M.
,
Kamiyama
,
K.
, and
Tobita
,
Y.
,
2018
, “
Improvement of a Physical Model for Blockage Formation of Solid–Liquid Mixture Flow With Freezing for Core Safety Evaluation of SFRs
,”
J. Nucl. Sci. Technol.
,
55
(
5
), pp.
530
538
.10.1080/00223131.2017.1417172
17.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
.
18.
Wilhelm
,
D.
,
1990
,
AFDM: An Advanced Fluid-Dynamics Model
,
Los Alamos National Lab
, Los Alamos, NM.
19.
Henneges
,
G.
, and
Kleinheins
,
S.
,
1994
,
AFDM: An Advanced Fluid-Dynamics Model
,
Los Alamos National Lab
, Los Alamos, NM, p. 244
20.
TobitaMorita
,
Y.
,
Kondo
,
K.
, and
Shirakawa
,
S. N.
,
1991
, “
Interfacial Area Modeling for a Multiphase, Multicomponent Fluid-Dynamics Code
,”
Proceedings of the International Conference on Multiphase Flows
, Tsukuba, Japan, Sept. 24–27, pp.
361
364
.
21.
Liu
,
P.
,
Yasunaka
,
S.
,
Matsumoto
,
T.
,
Morita
,
K.
,
Fukuda
,
K.
,
Yamano
,
H.
, and
Tobita
,
Y.
,
2007
, “
Dynamic Behavior of a Solid Particle Bed in a Liquid Pool. SIMMER-III Code Verification
,”
Nucl. Eng. Des.
,
237
(
5
), pp.
524
535
.10.1016/j.nucengdes.2006.08.004
22.
Chhabra
,
R.
, and
Basavaraj
,
M. G.
,
2019
,
Chapter 6 - Motion of Particles in a Fluid. In: Coulson and Richardson's Chemical Engineering
, 6th ed.,
Butterworth-Heinemann
, Oxford, UK, pp.
281
334
.
23.
Dey
,
S.
,
Zeeshan Ali
,
S.
, and
Padhi
,
E.
,
2019
, “
Terminal Fall Velocity: The Legacy of Stokes From the Perspective of Fluvial Hydraulics
,”
Proc. R. Soc. A
,
475
(
2228
), p.
20190277
.10.1098/rspa.2019.0277
24.
Farrell
,
E. J.
, and
Sherman
,
D. J.
,
2015
, “
A New Relationship Between Grain Size and Fall (Settling) Velocity in Air
,”
Prog. Phys. Geogr.
,
39
(
3
), pp.
361
387
.10.1177/0309133314562442
25.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Generalized Basset-Boussinesq-Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084501
.10.1103/PhysRevLett.106.084501
26.
Pal
,
D.
, and
Ghoshal
,
K.
,
2013
, “
Hindered Settling With an Apparent Particle Diameter Concept
,”
Adv. Water Resour.
,
60
, pp.
178
187
.10.1016/j.advwatres.2013.08.003
27.
Watson
,
R. L.
,
1969
, “
Modified Rubey's Law Accurately Predicts Sediment Settling Velocities
,”
Water Resour. Res.
,
5
(
5
), pp.
1147
1150
.10.1029/WR005i005p01147
28.
Gibbs
,
R. J.
,
Matthews
,
M. D.
, and
Link
,
D. A.
,
1971
, “
The Relationship Between Sphere Size and Settling Velocity
,”
J. Sediment. Res.
,
41
, pp.
7
18
.10.1306/74D721D0-2B21-11D7-8648000102C1865D
29.
B.
,
Cui
,
P. D.
,
Komar
., and
Jumpei
,
1983
, “
Settling Velocities of Natural Sand Grains in Air
,”
SEPM J. Sediment. Res.
,
53
(
4
), pp.
1205
1211
.10.1306/212F8346-2B24-11D7-8648000102C1865D
30.
Ferguson
,
R. I.
, and
Church
,
M.
,
2004
, “
A Simple Universal Equation for Grain Settling Velocity
,”
J. Sediment. Res.
,
74
(
6
), pp.
933
937
.10.1306/051204740933
31.
Kramer
,
O. J. I.
,
de Moel
,
P. J.
,
Baars
,
E. T.
,
van Vugt
,
W. H.
,
Padding
,
J. T.
, and
van der Hoek
,
J. P.
,
2019
, “
Improvement of the Richardson-Zaki Liquid-Solid Fluidisation Model on the Basis of Hydraulics
,”
Powder Technol.
,
343
, pp.
465
478
.10.1016/j.powtec.2018.11.018
32.
Slaa
,
S.
,
van Maren
,
D. S.
,
He
,
Q.
, and
Winterwerp
,
J. C.
,
2015
, “
Hindered Settling of Silt
,”
J. Hydraulic Eng.
,
141
(
9
), p.
04015020
.10.1061/(ASCE)HY.1943-7900.0001038
33.
Azizi
,
J.
,
Alexander
,
K. S.
,
Dollimore
,
D.
,
Murthy
,
A. S.
, and
Tata
,
S. S.
,
1992
, “
The Development of a Permeability Theory Applied to Concentrated Suspensions
,”
Colloids Surf.
,
62
(
1–2
), pp.
1
9
.10.1016/0166-6622(92)80031-V
34.
Richardson
,
J. F.
, and
Zaki
,
W. N.
,
1997
, “
Sedimentation and Fluidisation—Part I
,”
Chem. Eng. Res. Des.
,
75
, pp.
S82
S100
.10.1016/S0263-8762(97)80006-8
35.
Winterwerp
,
J. C.
,
2002
, “
On the Flocculation and Settling Velocity of Estuarine Mud
,”
Cont. Shelf Res.
,
22
(
9
), pp.
1339
1360
.10.1016/S0278-4343(02)00010-9
36.
Zhu
,
Z.
,
Wang
,
H.
,
Peng
,
D.
, and
Dou
,
J.
,
2019
, “
Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory
,”
Entropy
,
21
(
1
), p.
55
.10.3390/e21010055
You do not currently have access to this content.