Cast austenitic stainless steel (CASS) materials, which have a duplex structure consisting of austenite and ferrite phases, are susceptible to thermal embrittlement during reactor service. In addition, the prolonged exposure of these materials, which are used in reactor core internals, to neutron irradiation changes their microstructure and microchemistry, and these changes degrade their fracture properties even further. This paper presents a revision of the procedure and correlations presented in NUREG/CR-4513, Rev. 1 (Aug. 1994) for predicting the change in fracture toughness and tensile properties of CASS components due to thermal aging during service in light water reactors (LWRs) at 280–330 °C (535–625 °F). The methodology is applicable to CF-3, CF-3M, CF-8, and CF-8M materials with a ferrite content of up to 40%. The fracture toughness, tensile strength, and Charpy-impact energy of aged CASS materials are estimated from known material information. Embrittlement is characterized in terms of room-temperature (RT) Charpy-impact energy. The extent or degree of thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a material after long-term aging) is determined from the chemical composition of the material. Charpy-impact energy as a function of the time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The fracture toughness J-R curve for the aged material is then obtained by correlating RT Charpy-impact energy with fracture toughness parameters. A common “predicted lower-bound” J-R curve for CASS materials of unknown chemical composition is also defined for a given grade of material, range of ferrite content, and temperature. In addition, guidance is provided for evaluating the combined effects of thermal and neutron embrittlement of CASS materials used in the reactor core internal components. The correlations for estimating the change in tensile strength, including the Ramberg/Osgood parameters for strain hardening, are also described.

References

1.
Trautwein
,
A.
, and
Gysell
,
W.
,
1982
, “
Influence of Long Time Aging of CF-8 and CF-8M Cast Steel at Temperatures Between 300 and 500 °C on the Impact Toughness and the Structure Properties
,”
Stainless Steel Castings
,
V. G.
Behal
, and
A. S.
Melilli
, eds.,
ASTM
,
Philadelphia, PA
, pp.
165
189
.
2.
Landerman
,
E. I.
, and
Bamford
,
W. H.
,
1978
, “
Fracture Toughness and Fatigue Characteristics of Centrifugally Cast Type 316 Stainless Steel Pipe After Simulated Thermal Service Conditions
,”
Ductility and Toughness Considerations in Elevated-Temperature Service
,
ASME
,
New York
, pp.
99
127
.
3.
Solomon
,
H. D.
, and
Devine
,
T. M.
, Jr.
,
1983
, “
Duplex Stainless Steels—A Tale of Two Phases
,”
Duplex Stainless Steels
,
R. A.
Lula
, ed.,
ASM
,
Materials Park, OH
, pp.
693
756
.
4.
Hale
,
G. E.
, and
Garwood
,
S. J.
,
1990
, “
The Effect of Aging on the Fracture Behaviour of Cast Stainless Steel and Weldments
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
230
235
.
5.
McConnell
,
P.
, and
Sheckherd
,
J. W.
,
1987
, “
Fracture Toughness Characterization of Thermally Embrittled Cast Duplex Stainless Steel
,” Electric Power Research Institute, Palo Alto, CA, Report No. NP-5439.
6.
Slama
,
G.
,
Petrequin
,
P.
, and
Mager
,
T.
,
1983
, “
Effect of Aging on Mechanical Properties of Austenitic Stainless Steel Castings and Welds
,”
SMIRT Post-Conference Seminar 6, Assuring Structural Integrity of Steel Reactor Pressure Boundary Components
,
Monterey, CA
, Aug. 29–30.
7.
Meyzaud
,
Y.
,
Ould
,
P.
,
Balladon
,
P.
,
Bethmont
,
M.
, and
Soulat
,
P.
,
1988
, “
Tearing Resistance of Aged Cast Austenitic Stainless Steel
,”
International Conference on Thermal Reactor Safety
(
NUCSAFE 88
),
Avignon, France
, Oct. 2–7, pp.
397
408
.
8.
Bethmont
,
M.
,
Mezaud
,
Y.
, and
Soulat
,
P.
,
1996
, “
Properties of Cast Austenitic Materials for Light Water Reactors
,”
Int. J. Pressure Vessels Piping
,
65
(
3
), pp.
221
229
.
9.
Pumphrey
,
P. H.
, and
Akhurst
,
K. N.
,
1990
, “
Aging Kinetics of CF3 Cast Stainless Steel in Temperature Range 300–400 °C
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
211
219
.
10.
Jayet-Gendrot
,
S.
,
Ould
,
P.
, and
Meylogan
,
T.
,
1998
, “
Fracture Toughness Assessment of In-Service Aged Primary Circuit Elbows Using Mini-CT Specimens Taken From Outer Skin
,”
Nucl. Eng. Des.
,
184
(
1
), pp.
3
11
.
11.
Bonnet
,
S.
,
Bourgoin
,
J.
,
Champredonde
,
J.
,
Guttmann
,
D.
, and
Guttmann
,
M.
,
1990
, “
Relationship Between Evolution of Mechanical Properties of Various Cast Duplex Stainless Steels and Metallurgical and Aging Parameters: An Outline of Current EDF Programmes
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
221
229
.
12.
Jayet-Gendrot
,
S.
,
Ould
,
P.
, and
Balladon
,
P.
,
1994
, “
Effect of Fabrication and Test Parameters on the Fracture Toughness of Aged Cast Duplex Stainless Steels
,”
Fontevaraud III
, Vol.
1
,
French Nuclear Energy Society
,
Paris
, pp.
90
97
.
13.
Massoud
,
J.-P.
,
Boveyron
,
C.
,
Ould
,
P.
,
Bezdikian
,
G.
, and
Churier-Bossenec
,
H.
,
1998
, “
Effect of the Manufacturing Process on the Thermal Aging of PWR Duplex Stainless Steel Components
,” 6th International Conference of Nuclear Engineering (
ICONE-6
), San Diego, CA, May 10–15, Paper No. ICINE-6085.
14.
Le Delliou
,
P.
,
Bezdikian
,
G.
,
Ould
,
P.
, and
Safa
,
N.
,
2006
, “
Full-Scale Test on an Aged Cast Duplex Stainless Steel Lateral Connection: Results and Analysis
,”
ASME
Paper No. PVP2006-IVPVT-11-94005.
15.
Faidy
,
C.
,
2010
, “
Flaw Evaluation in Elbows Through French RSEM Code
,”
ASME
Paper No. PVP2010–25085.
16.
Mills
,
W. J.
,
1988
, “
Heat-to-Heat Variations in the Fracture Toughness of Austenitic Stainless Steels
,”
Eng. Fract. Mech.
,
30
(
4
), pp.
469
492
.
17.
Mills
,
W. J.
,
1987
, “
Fracture Toughness of Aged Stainless Steel Primary Piping and Reactor Vessel Materials
,”
ASME J. Pressure Vessel Technol.
,
109
(
4
), pp.
440
448
.
18.
Mills
,
W. J.
,
1997
, “
Fracture Toughness of Type 304 and 316 Stainless Steels and Their Welds
,”
Int. Mater. Rev.
,
42
(
2
), pp.
45
82
.
19.
Chung
,
H. M.
, and
Chopra
,
O. K.
,
1988
, “
Kinetics and Mechanism of Thermal Aging Embrittlement of Duplex Stainless Steels
,”
Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
,
G. J.
Theus
, and
J. R.
Weeks
, eds.,
Metallurgical Society
,
Warrendale, PA
, pp.
359
370
.
20.
Grimes
,
C. I.
,
2000
, “License Renewal Issue No. 98-0030, Thermal Aging Embrittlement of Cast Stainless Steel Components,”
Letter
to D. J. Walters (Nuclear Energy Institute, Washington, DC).
21.
Nickell
,
R. E.
, and
Rinckel
,
M. A.
,
1997
, “
Evaluation of Thermal Aging Embrittlement for Cast Austenitic Stainless Steels Components in LWR Reactor Coolant Systems
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. TR-106092.
22.
Chopra
,
O. K.
, and
Sather
,
A.
,
1990
, “
Initial Assessment of the Mechanisms and Significance of Low-Temperature Embrittlement of Cast Stainless Steels in LWR Systems
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-5385
, ANL-89/17.
23.
Chopra
,
O. K.
,
Sather
,
A.
, and
Bush
,
L. Y.
,
1991
, “
Long Term Embrittlement of Cast Stainless Steels in LWR Systems: Semiannual Report, April-September 1989
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-4744
Vol. 4, No. 2, ANL-90/49.
24.
Chopra
,
O. K.
,
1992
, “
Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems: Semiannual Report Oct. 1990–March 1991
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-4744
Vol. 6, No. 1, ANL-91/22.
25.
Chopra
,
O. K.
,
1993
, “
Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems: Semiannual Report Oct. 1991–March 1992
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-4744
Vol. 7, No. 1, ANL-92/42.
26.
Chopra
,
O. K.
, and
Chung
,
H. M.
,
1988
, “
Effect of Low-Temperature Aging on the Mechanical Properties of Cast Stainless Steels
,” Symposium on Properties of Stainless Steels in Elevated Temperature Service, Boston, MA, Dec. 13, 1987, MPC-Vol. 26/PVP-Vol.
132
,
M.
Prager
, ed.,
ASME
,
New York
, pp.
79
105
.
27.
Chopra
,
O. K.
,
1994
, “
Estimation of Fracture Toughness of Cast Stainless Steels During Thermal Aging in LWR Systems
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-4513
, Rev. 1, ANL-93/22.
28.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
1995
, “
Mechanical Properties of Thermally Aged Cast Stainless Steels From Shippingport Reactor Components
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-6275
, ANL-94/37.
29.
Michaud
,
W. F.
,
Toben
,
P. T.
,
Soppet
,
W. K.
, and
Chopra
,
O. K.
,
1994
, “
Tensile-Property Characterization of Thermally Aged Cast Stainless Steels
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-6142
, ANL-93/35.
30.
Tanaka
,
T.
,
Kawaguchi
,
S.
,
Sakamoto
,
N.
, and
Koyama
,
K.
,
1995
, “
Thermal Aging of Cast Duplex Stainless Steels
,” Joint
ASME/JSME
Pressure Vessels and Piping Conference—Structural Integrity of Pressure Vessels, Piping, and Components
,
Honolulu, HI
, July 23–27, pp.
141
146
.
31.
Suzuki
,
I.
,
Koyama
,
M.
,
Kawaguchi
,
S.
,
Mimaki
,
H.
,
Akiyama
,
M.
,
Okuba
,
T.
,
Mishima
,
Y.
, and,
Mager
,
T. R.
,
1996
, “
Long Term Thermal Aging of Cast Duplex Stainless Steels
,”
International Conference on Nuclear Engineering
(
ICONE-4
),
American Society of Mechanical Engineers
,
New York
, pp.
253
257
.
32.
Hojo
,
K.
,
Muroya
,
I.
,
Kawaguchi
,
S.
,
Koyama
,
K.
, and
Sakai
,
K.
,
1997
, “
Application of the Two-Criteria Approach to the Austenitic Cast Stainless Steel Pipe
,” 5th International Conference on Nuclear Engineering (
ICONE5
), Nice, France, May 26–30, Paper No. ICONE5-2379.
33.
Kawaguchi
,
S.
,
Nagasaki
,
T.
, and
Koyama
,
K.
,
2005
, “
Prediction Method of Tensile Properties and Fracture Toughness of Thermally Aged Cast Duplex Stainless Steel Piping
,”
ASME
Paper No. PVP2005-71528.
34.
Japan Nuclear Energy Safety Organization
,
2006
, “
Investigation Report on the Integrity of Thermally-Embrittled Cast Stainless Steel Pipe
,” Nuclear Energy System Safety Division, Tokyo, Report No. JNES-SS-0602.
35.
Bruemmer
,
S. M.
,
Cole
,
J. I.
,
Garner
,
F. A.
,
Greenwood
,
L. R.
,
Hamilton
,
M. L.
,
Reid
,
B. D.
, Simonen, E. P,
Lucas
,
G. E.
,
Was
,
G. S.
,
Andresen
,
P. L.
, and
Pettersson
,
K.
,
1996
, “
Critical Issue Reviews for the Understanding and Evaluation of Irradiation-Assisted Stress Corrosion Cracking
,” Electric Power Research Institute, Palo Alto, CA, Report No.
EPRI
TR-107159.
36.
Bruemmer
,
S. M.
,
Simonen
,
E. P.
,
Scott
,
P. M.
,
Andresen
,
P. L.
,
Was
,
G. S.
, and
Nelson
,
J. L.
,
1999
, “
Radiation-Induced Material Changes and Susceptibility to Intergranular Failure of Light-Water-Reactor Core Internals
,”
J. Nucl. Mater.
,
274
(
3
), pp.
299
314
.
37.
Edwards
,
D.
,
Simonen
,
E.
, and
Bruemmer
,
S.
,
2007
, “
Radiation-Induced Segregation Behavior in Austenitic Stainless Steels: Fast Reactor Versus Light Water Reactor Irradiations
,”
13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
, Whistler, BC, Canada, Aug. 19–23,
T. R.
Allen
,
P. J.
King
, and
L.
Nelson
, eds.,
Canadian Nuclear Society
,
Toronto, Canada
, Paper No.
P0139
.
38.
Herrera
,
M. L.
,
Higgins
,
J. P.
,
Suzuki
,
I.
, and
Koyama
,
M.
,
1996
, “
Evaluation of the Effects of Irradiation on the Fracture Toughness of BWR Internal Components
,”
ASME/JSME 4th International Conference on Nuclear Engineering
(
ICONE-4
), New Orleans, LA, Mar. 10–14,
A. S.
Rao
,
R. M.
Duffey
, and
D.
Elias
, eds.,
American Society of Mechanical Engineers
,
New York
, Vol.
5
, pp.
245
251
.
39.
Xu
,
H.
, and
Fyfitch
,
S.
,
2004
, “
Materials Reliability Program: A Review of Radiation Embrittlement for Stainless Steels (MRP-79)
,” Rev. 1, Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1008204.
40.
Carter
,
R. G.
, and
Gamble
,
R. M.
,
2002
, “
Assessment of the Fracture Toughness of Irradiated Stainless Steel for BWR Core Shrouds
,”
5th International Symposium, Contribution of Materials Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors
,
Avignon, France
, Sept. 23–27, pp.
381
392
.
41.
Demma
,
A.
,
Carter
,
R.
,
Jenssen
,
A.
,
Torimaru
,
T.
, and
Gamble
,
R.
,
2007
, “
Fracture Toughness of Highly Irradiated Stainless Steels in Boiling Water Reactors
,”
13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
, Whistler, BC, Canada, Aug. 19–23,
T. R.
Allen
,
P. J.
King
, and
L.
Nelson
, eds.,
Canadian Nuclear Society
,
Toronto, Canada
, Paper No. 114.
42.
Ehrnsten
,
U.
,
Wallin
,
K.
,
Karjalainen-Roikonen
,
P.
,
van Dyck
,
S.
, and
Ould
,
P.
,
2006
, “
Fracture Toughness of Stainless Steels Irradiated to ≈9 dpa in Commercial BWRs
,”
6th International Symposium on Contribution of Materials Investigations to Improve the Safety and Performance of LWRs
,
Fontevraud France
, Sept. 18–22, Vol.
1
, pp.
661
670
.
43.
Kim
,
C.
,
Lott
,
R.
,
Byrne
,
S.
,
Burke
,
M.
, and
Gerzen
,
G.
,
2006
, “
Embrittlement of Cast Austenitic Stainless Steel Reactor Internals Components
,”
6th International Symposium on Contribution of Materials Investigations to Improve the Safety and Performance of LWRs
,
Fontevraud
,
France
, Sept. 18–22, Vol. 1, pp.
671
682
.
44.
Fyfitch
,
S.
,
Xu
,
H.
,
Demma
,
A.
,
Carter
,
R.
,
Gamble
,
R.
, and
Scott
,
P.
,
2009
, “
Fracture Toughness of Irradiated Stainless Steel in Nuclear Power Systems
,”
14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
, Virginia Beach, VA, Aug. 23–27,
American Nuclear Society
,
La Grange Park, IL
.
45.
Fyfitch
,
S.
,
Xu
,
H.
,
Moore
,
K.
, and
Gurdal
,
R.
,
2005
, “
Materials Reliability Program: PWR Internals Material Aging Degradation Mechanism Screening and Threshold Values (MRP-175)
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1012081.
46.
Mehta
,
H. S.
,
Frew
,
B. D.
,
Horn
,
R. M.
,
Hua
,
F.
,
Ranganath
,
S.
, and
Carter
,
R. G.
,
2010
, “
Thermal Aging and Neutron Embrittlement Evaluation of Cast Austenitic Stainless Steels
,”
ASME
Paper No. PVP2010-25974.
47.
Electric Power Research Institute
,
2005
, “
Materials Reliability Program: Fracture Toughness Testing of Decommissioned PWR Core Internals Material Samples (MRP-160)
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1012079.
48.
Chopra
,
O. K.
, and
Rao
,
A. S.
,
2011
, “
A Review of Irradiation Effects on LWR Core Internal Materials—Neutron Embrittlement
,”
J. Nucl. Mater.
,
412
(
1
), pp.
195
208
.
49.
Chopra
,
O. K.
,
2010
, “
Degradation of LWR Core Internal Materials Due to Neutron Irradiation
,” Report No. NUREG/CR-7027.
50.
Balladon
,
P.
,
Heritier
,
J.
, and
Rabbe
,
P.
,
1983
, “
Influence of Microstructure on the Ductile Rupture Mechanisms of a 316L Steel at Room and Elevated Temperatures
,”
Fracture Mechanics: 14th Symposium, Vol. II: Testing and Applications
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
496
516
.
51.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
2008
, “
Crack Growth Rates and Fracture Toughness of Irradiated Austenitic Stainless Steels in BWR Environments
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-6960
, ANL-06/58.
52.
Lee
,
S.
,
Kuo
,
P. T.
,
Wichman
,
K.
, and
Chopra
,
O.
,
1997
, “
Flaw Evaluation of Thermally Aged Cast Stainless Steel in Light-Water Reactor Applications
,”
Int. J. Pressure Vessels Piping
,
72
(
1
), pp.
37
44
.
53.
Heger
,
J. J.
,
1951
, “
885°F Embrittlement of the Ferritic Chromium-Iron Alloys
,”
Met. Prog.
,
60
, pp.
55
61
.
54.
Grobner
,
P. J.
,
1973
, “
The 885°F (475 °C) Embrittlement of Ferritic Stainless Steels
,”
Metall. Trans.
,
4
(
1
), pp.
251
260
.
55.
Nichol
,
T. J.
,
Datta
,
A.
, and
Aggen
,
G.
,
1980
, “
Embrittlement of Ferritic Stainless Steels
,”
Metall. Trans. A
,
11
(
4
), pp.
573
585
.
56.
Chung
,
H. M.
, and
Leax
,
T. R.
,
1990
, “
Embrittlement of Laboratory- and Reactor-Aged CF3, CF8, and CF8M Duplex Stainless Steels
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
249
262
.
57.
Auger
,
P.
,
Danoix
,
F.
,
Menand
,
A.
,
Bonnet
,
S.
,
Bourgoin
,
J.
, and
Guttmann
,
M.
,
1990
, “
Atom Probe and Transmission Electron Microscopy Study of Aging of Cast Duplex Stainless Steels
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
301
313
.
58.
Vrinat
,
M.
,
Cozar
,
P.
, and
Meyzaud
,
Y.
,
1986
, “
Precipitated Phases in the Ferrite of Aged Cast Duplex Stainless Steels
,”
Scr. Metall.
,
20
(
8
), pp.
1101
1106
.
59.
Joly
,
P.
,
Cozar
,
R.
, and
Pineau
,
A.
,
1990
, “
Effect of Crystallographic Orientation of Austenite on the Formation of Cleavage Cracks in Ferrite in an Aged Duplex Stainless Steel
,”
Scr. Metall.
,
24
(
12
), pp.
2235
2240
.
60.
Sassen
,
J. M.
,
Hetherington
,
M. G.
,
Godfrey
,
T. J.
, and
Smith
,
G. D. W.
,
1988
, “
Kinetics of Spinodal Reaction in the Ferrite Phase of a Duplex Stainless Steel
,”
Properties of Stainless Steels in Elevated Temperature Service
, MPC Vol. 26, PVP Vol.
132
,
M.
Prager
, ed.,
ASME
,
New York
, pp.
65
78
.
61.
Brown
,
J. E.
,
Cerezo
,
A.
,
Godfrey
,
T. J.
,
Hetherington
,
M. G.
, and
Smith
,
G. D. W.
,
1990
, “
Quantitative Atom Probe Analysis of Spinodal Reaction in Ferrite Phase of Duplex Stainless Steel
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
293
300
.
62.
Bentley
,
J.
,
Miller
,
M. K.
,
Brenner
,
S. S.
, and
Spitznagei
,
J. A.
,
1985
, “
Identification of G-Phase in Aged Cast CF-8 Type Stainless Steel
,”
43rd Electron Microscopy Society of America
, Louisville, KY, Aug. 5–9,
G. W.
Bailey
, ed.,
San Francisco Press
,
San Francisco, CA
, pp.
328
329
.
63.
Miller
,
M. K.
, and
Bentley
,
J.
,
1988
, “
Characterization of Fine-Scale Microstructures in Aged Primary Coolant Pipe Steels
,”
Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors
,
G. J.
Theus
, and
J. R.
Weeks
, eds.,
The Metallurgical Society
,
Warrendale, PA
, pp.
341
349
.
64.
Kawaguchi
,
S.
,
Sakamoto
,
N.
,
Takano
,
G.
,
Matsuda
,
F.
,
Kikuchi
,
Y.
, and
Mraz
,
L.
,
1997
, “
Microstructural Changes and Fracture Behavior of CF8M Duplex Stainless Steel After Long-Term Aging
,”
Nucl. Eng. Des.
,
174
(
3
), pp.
273
285
.
65.
Leone
,
G. L.
, and
Kerr
,
H. W.
,
1982
,
Ferrite to Austenite Transformation in Stainless Steels
,
American Welding Society and Welding Research Council
, Miami, pp.
13s
21s
.
66.
Jansson
,
C.
,
1990
, “
Degradation of Cast Stainless Steel Elbows After 15 Years in Service
,”
Fontevraud II International Symposium, Fontevraud
,
France
, Sept. 10–14.
67.
Schaeffler
,
A. L.
,
1947
, “
Selection of Austenitic Electrodes for Welding Dissimilar Metals
,”
Weld. J.
,
26
(
10
), pp.
601
620
.
68.
Hull
,
F. C.
,
1973
, “
Delta Ferrite and Martensite Formation in Stainless Steels
,”
Weld. J. Res.
,
52
(
5
), pp.
193s
203s
.
69.
ASTM
,
2001
, “
Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof
,”
American Society of Testing and Materials
,
West Conshohocken, PA
, Standard No. A 800/A 800M.
70.
Schoefer
,
E. A.
,
1974
, “
A Diagram for Estimation of Ferrite Content in Stainless Steel Castings
,” Appendix to “Mossbauer-Effect Examination of Ferrite in Stainless Steel Welds and Castings,
L. J
.
Schwartzendruber.
,
L. H
.
Bennett.
,
E. A
.
Schoefer.
,
W. T
.
Delong.
, and
H. C
.
Cambell.
,
Weld. J.
,
53
(
1
), pp.
10
12
.
71.
AWS
,
1974
, “
Standard Procedures for Calibrating Magnetic Instruments to Measure Delta Ferrite Content of Austenitic Stainless Steel Weld Metal
,”
American Welding Society
,
Miami, FL
, Standard No. A4.2-74.
72.
Chopra
,
O. K.
,
1991
, “
Estimation of Fracture Toughness of Cast Stainless Steels During Thermal Aging in LWR Systems
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-4513
, Rev. 0, ANL-90/42.
73.
Hiser
,
A. L.
,
1989
, “
Fracture Toughness Characterization of Nuclear Piping Steels
,” Materials Engineering Associates, Inc., Lanham, MD, Report No.
NUREG/CR-5188
, MEA-2325.
74.
Morra
,
M.
,
2010
, “
Program on Technology Innovation: Scoping Study of Low Temperature Crack Propagation for 182 Weld Metal in BWR Environments and for Cast Austenitic Stainless Steel in PWR Environments (Revision 1)
,” Electric Power Research Institute, Palo Alto, CA, Report No. EPRI 1020957.
75.
Mills
,
W. J.
, and
Brown
,
C. M.
,
2001
, “
Fracture Toughness of Alloy 600 and an EN82H Weld in Air and Water
,”
Metall. Mater. Trans. A
,
32
(
5
), pp.
1161
1174
.
76.
Brown
,
C. M.
, and
Mills
,
W. J.
,
2002
, “
Fracture Toughness of Alloy 690 and EN52 Welds in Air and Water
,”
Metall. Mater. Trans. A
,
33
(
6
), pp.
1725
1735
.
77.
Nakajima
,
N.
,
Shima
,
S.
,
Nakajima
,
H.
, and
Kondo
,
T.
,
1986
, “
The Fracture Toughness of Sensitized 304 Stainless Steel in Simulated Reactor Water
,”
Nucl. Eng. Des.
,
93
(
1
), pp.
95
106
.
78.
McConnell
,
P.
,
Sheckherd
,
W.
, and
Morris
,
D. M.
,
1989
, “
Properties of Thermally Embrittled Cast Duplex Stainless Steel
,”
J. Mater. Eng.
,
11
(
3
), pp.
227
236
.
79.
Anzai
,
H.
,
Kuniya
,
J.
, and
Masaoka
,
I.
,
1988
, “
Effect of 475 °C Embrittlement on Fracture Resistance of Cast Duplex Stainless Steel
,”
Trans. Iron Steel Inst. Jpn.
,
28
(
5
), pp.
400
405
.
80.
Vassilaros
,
M. G.
,
Hays
,
R. A.
, and
Gudas
,
J. P.
,
1985
, “
Investigation of the Ductile Fracture Properties of Type 304 Stainless Steel Plate, Welds, and 4-inch Pipe
,”
12th Water Reactor Safety Research Information Meeting
, Gaithersburg, MD, Oct. 22–26, Vol.
4
,
U.S. Nuclear Regulatory Commission
, Washington, DC, Report No.
NUREG/CP-0058
, pp.
176
189
.
81.
Wilkowski
,
G. M.
,
Ahmad
,
J.
,
Barnes
,
C. R.
,
Broek
,
D.
,
Kramer
,
G.
,
Landow
,
M.
,
Marschall
,
C. W.
,
Maxey
,
W.
,
Nakagaki
,
M.
, and
Scott
,
P.
,
1985
, “
Degraded Pipe Program—Phase II, Semiannual Report
,” Vol.
2
, Battelle Columbus Division, Columbus, OH, Report No. NUREG/CR-4082.
82.
Bamford
,
W. H.
, and
Bush
,
A. J.
,
1979
, “
Fracture Behavior of Stainless Steels
,”
Elastic-Plastic Fracture
,
ASTM
,
Philadelphia, PA
, pp.
553
577
.
83.
Chen
,
Y.
,
Alexandreanu
,
B.
, and
Natesan
,
K.
,
2015
, “
Crack Growth Rate and Fracture Toughness Tests on Irradiated Cast Stainless Steels
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-7184
, ANL-12/56.
84.
Chen
,
Y.
,
Alexandreanu
,
B.
, and
Natesan
,
K.
,
2014
, “
Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels With Low Ferrite Content
,”
Argonne National Laboratory
,
Argonne, IL
,
Report No. ANL-14/16
.
85.
Meyer
,
T.
,
Boggess
,
C.
,
Byrne
,
S.
,
Schwirian
,
R.
,
Gift
,
F.
, and
Gold
,
R.
,
2006
, “
Materials Reliability Program: Screening, Categorization, and Ranking of Reactor Internals Components for Westinghouse and Combustion Engineering PWR Design (MRP-191)
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1013234.
86.
Chopra
,
O. K.
,
2015
, “
Effects of Thermal Aging and Neutron Irradiation on Crack Growth Rate and Fracture Toughness of Cast Austenitic Stainless Steels and Austenitic Stainless Steel Welds
,”
Argonne National Laboratory
,
Argonne, IL
, Report No. NUREG/CR-7185, ANL-14/10.
87.
Frew
,
B.
,
Horn
,
R.
,
Hua
,
F.
,
Mehta
,
H.
, and
Ranganath
,
S.
,
2009
, “
BWRVIP-234: BWR Vessel and Internals Project, Thermal Aging and Neutron Embrittlement Evaluation of Cast Austenitic Stainless Steels for BWR Internals
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1019060.
88.
Mills
,
W. J.
,
1988
, “
Fracture Toughness of Irradiated Stainless Steels Alloys
,”
Nucl. Technol.
,
82
(
3
), pp.
290
303
.
89.
Mills
,
W. J.
,
James
,
L. A.
, and
Blackburn
,
L. D.
,
1985
, “
Results of Fracture Mechanics Tests on PNC SU 304 Plate
,” Hanford Engineering Development Laboratory, Richland, WA, Report No. HEDL-7544.
90.
Andresen
,
P. L.
,
Ford
,
F. P.
,
Murphy
,
S. M.
, and
Perks
,
J. M.
,
1990
, “
State of Knowledge of Radiation Effects on Environmental Cracking in Light Water Reactor Core Materials
,”
4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors
, Palo Alto, CA, Nov. 14–15, 1989, pp.
1.83
1.121
.
91.
Chen
,
Y.
,
Chopra
,
O. K.
,
Gruber
,
E. E.
, and
Shack
,
W. J.
,
2010
, “
Irradiated-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-7018
, ANL-09/17.
You do not currently have access to this content.