The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture-toughness J integral-resistance (J-R) curve or JIc is relatively small. Thermal aging has minimal effect and the welding process has a significant effect on the tensile strength. However, the existing data are inadequate to accurately establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture-toughness J-R curve for unaged and aged and nonirradiated and irradiated SS welds. The existing fracture-toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curves for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/metal inert gas (MIG)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/MIG/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness of all welds by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented, which define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.

References

1.
Mills
,
W. J.
,
1997
, “
Fracture Toughness of Type 304 and 316 Stainless Steels and Their Welds
,”
Int. Mater. Rev.
,
42
(
2
), pp.
45
82
.
2.
Trautwein
,
A.
, and
Gysel
,
W.
,
1982
, “
Influence of Long Time Aging of CF-8 and CF-8M Cast Steel at Temperatures Between 300 and 500 °C on the Impact Toughness and the Structure Properties
,”
Stainless Steel Castings
,
V. G.
Behal
and
A. S.
Melilli
, eds.,
ASTM
,
Philadelphia, PA
, pp.
165
189
.
3.
Landerman
,
E. I.
, and
Bamford
,
W. H.
,
1978
, “
Fracture Toughness and Fatigue Characteristics of Centrifugally Cast Type 316 Stainless Steel Pipe After Simulated Thermal Service Conditions
,”
Ductility and Toughness Considerations in Elevated-Temperature Service
,
ASME
,
New York
, pp.
99
127
.
4.
Solomon
,
H. D.
, and
Devine
,
T. M.
,
1979
, “
Influence of Microstructure on the Mechanical Properties and Localized Corrosion of a Duplex Stainless Steel
,”
Micon 78: Optimization of Processing, Properties, and Service Performance Through Microstructural Control
,
H.
Abrams
,
G. N.
Maniar
,
D. A.
Nail
, and
H. D.
Solomon
, eds.,
ASTM
,
Philadelphia, PA
, p.
430
.
5.
Solomon
,
H. D.
, and
Devine
,
T. M.
, Jr.
,
1983
, “
Duplex Stainless Steels—A Tale of Two Phases
,”
Duplex Stainless Steels
,
R. A.
Lula
, ed.,
ASM
,
Metals Park, OH
, pp.
693
756
.
6.
Slama
,
G.
,
Petrequin
,
P.
, and
Mager
,
T.
,
1983
, “
Effect of Aging on Mechanical Properties of Austenitic Stainless Steel Castings and Welds
,”
Light Water Reactor Structural Integrity
,
K. E.
Stahlkopf
and
L. E.
Steele
, eds.,
Elsevier Applied Science
,
New York
, pp.
211
240
.
7.
McConnell
,
P.
, and
Sheckherd
,
J. W.
,
1987
, “
Fracture Toughness Characterization of Thermally Embrittled Cast Duplex Stainless Steel
,” Electric Power Research Institute, Palo Alto, CA, Report No. NP-5439.
8.
Meyzaud
,
Y.
,
Ould
,
P.
,
Balladon
,
P.
,
Bethmont
,
M.
, and
Soulat
,
P.
,
1988
, “
Tearing Resistance of Aged Cast Austenitic Stainless Steel
,”
International Conference on Thermal Reactor Safety (NUCSAFE 88)
,
Avignon, France
, Oct. 2–7, pp.
397
408
.
9.
Bethmont
,
M.
,
Mezaud
,
Y.
, and
Soulat
,
P.
,
1996
, “
Properties of Cast Austenitic Materials for Light Water Reactors
,”
Int. J. Pressure Vessels Piping
,
65
(
3
), pp.
221
229
.
10.
Jayet-Gendrot
,
S.
,
Ould
,
P.
, and
Meylogan
,
T.
,
1998
, “
Fracture Toughness Assessment of In-Service Aged Primary Circuit Elbows Using Mini-CT Specimens Taken From Outer Skin
,”
Nucl. Eng. Des.
,
184
(
1
), pp.
3
11
.
11.
Mills
,
W. J.
,
1988
, “
Heat-to-Heat Variations in the Fracture Toughness of Austenitic Stainless Steels
,”
Eng. Fract. Mech.
,
30
(
4
), pp.
469
492
.
12.
Mills
,
W. J.
,
1988
, “
Fracture Toughness of Stainless Steel Welds
,”
Fracture Mechanics: 19th Symposium
, San Antonio, TX, June 30–July 2,
ASTM
,
Philadelphia, PA
, pp.
330
355
.
13.
Mills
,
W. J.
,
1987
, “
Fracture Toughness of Aged Stainless Steel Primary Piping and Reactor Vessel Materials
,”
ASME J. Pressure Vessel Technol.
,
109
(
4
), pp.
440
448
.
14.
Chung
,
H. M.
, and
Chopra
,
O. K.
,
1988
, “
Kinetics and Mechanism of Thermal Aging Embrittlement of Duplex Stainless Steels
,”
Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
,
G. J.
Theus
and
J. R.
Weeks
, eds.,
Metallurgical Society
,
Warrendale, PA
, pp.
359
370
.
15.
Bonnet
,
S.
,
Bourgoin
,
J.
,
Champredonde
,
J.
,
Guttmann
,
D.
, and
Guttmann
,
M.
,
1990
, “
Relationship Between Evolution of Mechanical Properties of Various Cast Duplex Stainless Steels and Metallurgical and Aging Parameters: An Outline of Current EDF Programmes
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
221
229
.
16.
Pumphrey
,
P. H.
, and
Akhurst
,
K. N.
,
1990
, “
Aging Kinetics of CF3 Cast Stainless Steel in Temperature Range 300–400 °C
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
211
219
.
17.
Grimes
,
C. I.
, and
U.S. Nuclear Regulatory Commission
,
2000
, “
License Renewal and Standardization Branch, letter to Douglas J. Walters
,” Nuclear Energy Institute, Washington, DC, License Renewal Issue No. 98-0030, NRC No. ML003717179.
18.
Nickell
,
R. E.
, and
Rinckel
,
M. A.
,
1997
, “
Evaluation of Thermal Aging Embrittlement for Cast Austenitic Stainless Steels Components in LWR Reactor Coolant Systems
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. TR-106092.
19.
Rinckel
,
M. A.
,
2001
, “
Evaluation of Thermal Aging Embrittlement for Cast Austenitic Stainless Steel Components
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1000976.
20.
Yukawa
,
S.
,
1993
, “
Review of the Evaluation of the Toughness of Austenitic Steels and Nickel Alloys After Long-Term Elevated Temperature Exposure
,” Pressure Vessel Research Council of the Welding Research Council, Shaker Heights, OH, WRC Bulletin No. 378.
21.
Sasikala
,
G.
, and
Ray
,
S. K.
,
2011
, “
Influence of Aging of the Quasi-Static Fracture Toughness of an SS 316(N) Weld at Ambient and Elevated Temperatures
,”
J. Nucl. Mater.
,
408
(
1
), pp.
45
53
.
22.
Chopra
,
O. K.
, and
Sather
,
A.
,
1990
, “
Initial Assessment of the Mechanisms and Significance of Low-Temperature Embrittlement of Cast Stainless Steels in LWR Systems
,” Argonne National Laboratory, Argonne, IL, Report No.
NUREG/CR-5385
, ANL-89/17.
23.
Chopra
,
O. K.
, and
Chung
,
H. M.
,
1988
, “
Effect of Low-Temperature Aging on the Mechanical Properties of Cast Stainless Steels
,”
Properties of Stainless Steels in Elevated Temperature Service
, MPC-Vol. 26/PVP-Vol.
132
,
M.
Prager
, ed.,
ASME
,
New York
, pp.
79
105
.
24.
Chopra
,
O. K.
,
1994
, “
Estimation of Fracture Toughness of Cast Stainless Steels During Thermal Aging in LWR Systems
,” Argonne National Laboratory, Argonne, IL, Report No.
NUREG/CR-4513
, Rev. 1, ANL-93/22.
25.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
1995
, “
Mechanical Properties of Thermally Aged Cast Stainless Steels From Shippingport Reactor Components
,” Argonne National Laboratory, Argonne, IL, Report No.
NUREG/CR-6275
, ANL-94/37.
26.
Michaud
,
W. F.
,
Toben
,
P. T.
,
Soppet
,
W. K.
, and
Chopra
,
O. K.
,
1994
, “
Tensile-Property Characterization of Thermally Aged Cast Stainless Steels
,” Argonne National Laboratory, Argonne, IL, Report No.
NUREG/CR-6142
, ANL-93/35 .
27.
Gavenda
,
D. J.
,
Michaud
,
W. F.
,
Galvin
,
T. M.
,
Burke
,
W. F.
, and
Chopra
,
O. K.
,
1996
, “
Effects of Thermal Aging on Fracture Toughness and Charpy-Impact Strength of Stainless Steel Pipe Welds
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-6428
, ANL-95/47.
28.
Bruemmer
,
S. M.
,
Cole
,
J. I.
,
Garner
,
F. A.
,
Greenwood
,
L. R.
,
Hamilton
,
M. L.
,
Reid
,
B. D.
,
Simonen
,
E. P.
,
Lucas
,
G. E.
,
Was
,
G. S.
,
Andresen
,
P. L.
, and
Pettersson
,
K.
,
1996
, “
Critical Issue Reviews for the Understanding and Evaluation of Irradiation-Assisted Stress Corrosion Cracking
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. TR-107159.
29.
Scott
,
P.
,
1994
, “
A Review of Irradiation Assisted Stress Corrosion Cracking
,”
J. Nucl. Mater.
,
211
(
2
), pp.
101
122
.
30.
Was
,
G. S.
, and
Andresen
,
P. L.
,
2007
, “
Stress Corrosion Cracking Behavior of Alloys in Aggressive Nuclear Reactor Core Environments
,”
Corrosion
,
63
(
1
), pp.
19
45
.
31.
Andresen
,
P. L.
,
Ford
,
F. P.
,
Murphy
,
S. M.
, and
Perks
,
J. M.
,
1990
, “
State of Knowledge of Radiation Effects on Environmental Cracking in Light Water Reactor Core Materials
,”
4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
, Jekyll Island, GA, Aug. 6–10,
NACE
,
Houston, TX
, pp.
1.83
1.121
.
32.
Bruemmer
,
S. M.
,
Simonen
,
E. P.
,
Scott
,
P. M.
,
Andresen
,
P. L.
,
Was
,
G. S.
, and
Nelson
,
J. L.
,
1999
, “
Radiation-Induced Material Changes and Susceptibility to Intergranular Failure of Light-Water-Reactor Core Internals
,”
J. Nucl. Mater.
,
274
(
3
), pp.
299
314
.
33.
Herrera
,
M. L.
,
Higgins
,
J. P.
, and
Suzuki
,
I.
,
1996
, “
Evaluation of the Effects of Irradiation on the Fracture Toughness of BWR Internal Components
,”
ASME/JSME 4th International Conference on Nuclear Engineering (ICONE-4)
, New Orleans, LA, Mar. 10–13,
A. S.
Rao
,
R. M.
Duffey
, and
D.
Elias
, eds.,
American Society of Mechanical Engineers
,
New York
, Vol.
5
, pp.
245
251
.
34.
Mills
,
W. J.
,
1988
, “
Fracture Toughness of Irradiated Stainless Steel Alloys
,”
Nucl. Technol.
,
82
(3), pp.
290
303
.
35.
Xu
,
H.
, and
Fyfitch
,
S.
,
2004
, “
Materials Reliability Program: A Review of Radiation Embrittlement for Stainless Steels (MRP-79)
,” Rev. 1, Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1008204.
36.
Demma
,
A.
,
Carter
,
R.
,
Jenssen
,
A.
,
Torimaru
,
T.
, and
Gamble
,
R.
,
2007
, “
Fracture Toughness of Highly Irradiated Stainless Steels in Boiling Water Reactors
,”
13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
, Whistler, BC, Canada, Aug. 19–23,
T. R.
Allen
,
P. J.
King
, and
L.
Nelson
, eds.,
Canadian Nuclear Society
,
Toronto, Canada
, Paper No. 114.
37.
Ehrnsten
,
U.
,
Wallin
,
K.
,
Karjalainen-Roikonen
,
P.
,
van Dyck
,
S.
, and
Ould
,
P.
,
2006
, “
Fracture Toughness of Stainless Steels Irradiated to ≈9 dpa in Commercial BWRs
,”
6th International Symposium on Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, Fontevraud 6
,
French Nuclear Energy Society
,
SFEN, Fontevraud Royal Abbey, France
, Sept. 18–22, Vol.
1
, pp.
661
670
.
38.
Carter
,
R. G.
, and
Gamble
,
R. M.
,
2002
, “
Assessment of the Fracture Toughness of Irradiated Stainless Steel for BWR Core Shrouds
,”
Fontevraud 5 International Symposium, Contribution of Materials Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors
,
Avignon, France
, Sept. 25, pp.
381
392
.
39.
O'Donnell
,
I. J.
,
Huthmann
,
H.
, and
Tavassoli
,
A. A.
,
1996
, “
The Fracture Toughness Behavior of Austenitic Steels and Weld Metal Including the Effects of Thermal Aging and Irradiation
,”
Int. J. Pressure Vessels Piping
,
65
(
3
), pp.
209
220
.
40.
Kim
,
C.
,
Lott
,
R.
,
Byrne
,
S.
,
Burke
,
M.
, and
Gerzen
,
G.
,
2006
, “
Embrittlement of Cast Austenitic Stainless Steel Reactor Internals Components
,”
6th International Symposium on Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, Fontevraud 6
,
French Nuclear Energy Society
,
SFEN, Fontevraud Royal Abbey, France
, Sept. 18–22, Vol.
1
, pp.
671
682
.
41.
Fyfitch
,
S.
,
Xu
,
H.
,
Demma
,
A.
,
Carter
,
R.
,
Gamble
,
R.
, and
Scott
,
P.
,
2009
, “
Fracture Toughness of Irradiated Stainless Steel in Nuclear Power Systems
,”
14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
, Virginia Beach, VA, Aug. 23–27,
American Nuclear Society
,
La Grange Park, IL
, pp.
1307
1313
.
42.
Fyfitch
,
S.
,
Xu
,
H.
,
Moore
,
K.
, and
Gurdal
,
R.
,
2005
, “
Materials Reliability Program: PWR Internals Material Aging Degradation Mechanism Screening and Threshold Values (MRP-175)
,”
Electric Power Research Institute
,
Palo Alto, CA
,
EPRI
Report No. 1012081.
43.
Krug
,
M. E.
, and
Shogan
,
R. P.
,
2005
, “
Fracture Toughness Testing of Decommissioned PWR Core Internals Material Samples (MRP-160)
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1012079.
44.
Chopra
,
O. K.
, and
Rao
,
A. S.
,
2011
, “
A Review of Irradiation Effects on LWR Core Internal Materials: Neutron Embrittlement
,”
J. Nucl. Mater.
,
412
(
1
), pp.
195
208
.
45.
Chopra
,
O. K.
, and
Shack
,
W. J.
,
2008
, “
Crack Growth Rates and Fracture Toughness of Irradiated Austenitic Stainless Steels in BWR Environments
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-6960
, ANL-06/58.
46.
Chopra
,
O. K.
,
2010
, “
Degradation of LWR Core Internal Materials Due to Neutron Irradiation
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-7027
.
47.
Andresen
,
P. L.
,
2007
, “
Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water
,”
Corrosion
,
64
(
5
), pp.
439
464
.
48.
Bruemmer
,
S. M.
,
2001
, “
New Issues Concerning Radiation-Induced Material Changes and Irradiation-Assisted Stress Corrosion Cracking in Light-Water Reactors
,”
10th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactor
, Lake Tahoe, NV, Aug. 5–9,
NACE, Houston, TX
, Paper No. 0008V.
49.
Edwards
,
D.
,
Simonen
,
E.
, and
Bruemmer
,
S.
,
2007
, “
Radiation-Induced Segregation Behavior in Austenitic Stainless Steels: Fast Reactor Versus Light Water Reactor Irradiations
,”
13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
, Whistler, BC, Canada, Aug. 19–23,
T. R.
Allen
,
P. J.
King
, and
L.
Nelson
, eds.,
Canadian Nuclear Society
,
Toronto, Canada
, Paper No. P0139.
50.
Fyfitch
,
S.
,
Xu
,
H.
,
Scott
,
P.
,
Fournier
,
L.
, and
Demma
,
A.
,
2009
, “
Criteria for Initiation of Irradiation-Assisted Stress Corrosion Cracking in Stainless Steels in PWR Systems
,”
14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
, Virginia Beach, VA, Aug. 23–27,
American Nuclear Society
,
La Grange Park, IL
, pp.
1157
1163
.
51.
Jenssen
,
A.
,
Stjarnsater
,
J.
, and
Pathania
,
R.
,
2011
, “
Crack Growth Rates of Irradiated Commercial Stainless Steels in BWR and PWR Environments
,”
15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
, Colorado Springs, CO, July 31–Aug. 5,
J. T.
Busby
,
G.
Ilevbare
, and
P. L.
Andresen
, eds.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
1229
1240
.
52.
Jenssen
,
A.
, and
Ljunberg
,
L. G.
,
1995
, “
Irradiation Assisted Stress Corrosion Cracking: Post Irradiation CERT Tests of Stainless Steels in a BWR Test Loop
,”
7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactor
, Breckenridge, CO, Aug. 6–10,
G.
Airey
, et al, eds.,
NACE International
,
Houston, TX
, pp.
1043
1052
.
53.
Jenssen
,
A.
, and
Ljungberg
,
L. G.
,
1993
, “
Irradiation Assisted Stress Corrosion Cracking of Stainless Alloys in BWR Normal Water Chemistry and Hydrogen Water Chemistry
,”
6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactor
, San Diego, CA, Aug. 1–5,
R. E.
Gold
and
E. P.
Simonen
, eds.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
547
553
.
54.
Chopra
,
O. K.
, and
Rao
,
A. S.
,
2011
, “
A Review of Irradiation Effects on LWR Core Internal Materials—IASCC Susceptibility and Crack Growth Rates of Austenitic Stainless Steels
,”
J. Nucl. Mater.
,
409
(
3
), pp.
235
256
.
55.
Chen
,
Y.
,
Alexandreanu
,
B.
, and
Natesan
,
K.
,
2015
, “
Crack Growth Rate and Fracture Toughness Tests on Irradiated Cast Stainless Steels
,”
Argonne National Laboratory
,
Argonne, IL
, Report No.
NUREG/CR-7184
, ANL-12/56.
56.
Chopra
,
O. K.
,
2015
, “
Effect of Thermal Aging and Neutron Irradiation on Crack Growth Rate and Fracture Toughness of Cast Stainless Steels and Austenitic Stainless Steel Welds
,” Argonne National Laboratory, Argonne, IL, Report No.
NUREG/CR-7185
, ANL-14/10.
57.
Vitek
,
J. M.
,
David
,
S. A.
,
Alexander
,
D. J.
,
Keiser
,
J. R.
, and
Nanstad
,
R. K.
,
1991
, “
Low Temperature Aging Behavior of Type 308 Stainless Steel Weld Metal
,”
Acta Metall.
,
39
(
4
), pp.
503
516
.
58.
Alexander
,
D. J.
,
Alexander
,
K. B.
,
Miller
,
M. K.
, and
Nanstad
,
R. K.
,
1990
, “
The Effect of Aging at 343 °C on Type 308 Stainless Steel Weldments
,”
Fatigue, Degradation, and Fracture–1990
, MPV Vol. 30, PVP Vol.
195
,
W. H.
Bamford
,
C.
Becht
,
S.
Bandari
,
J. D.
Gilman
,
L. A.
James
, and
M.
Prager
, eds.,
ASME
,
New York
, pp.
187
192
.
59.
Hale
,
G. E.
, and
Garwood
,
S. J.
,
1990
, “
The Effect of Aging on the Fracture Behaviour of Cast Stainless Steel and Weldments
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
230
235
.
60.
Garwood
,
S. J.
,
1984
, “
Fracture Toughness of Stainless Steel Weldments at Elevated Temperatures
,”
Fracture Mechanics: 15th Symposium
, College Park, MD, July 7–9,
R. J.
Sanford
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
333
359
.
61.
Faure
,
F.
,
Houssin
,
B.
, and
Balladon
,
P.
,
1989
, “
Mechanical Properties of Automatic TIG/GTA Welds of Stainless Steel Piping in Nuclear Reactors
,”
Trends in Welding Research, ASM Conference
,
Gatlinburg, TN
, May 14–18.
62.
Horn
,
R. M.
,
Mehta
,
H. S.
,
Andrews
,
W. R.
, and
Ranganath
,
S.
,
1986
, “
Evaluation of the Toughness of Austenitic Stainless Steel Pipe Weldments
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. NP-4668.
63.
Landes
,
J. D.
, and
McCabe
,
D. E.
,
1986
, “
Toughness of Austenitic Stainless Steel Pipe Welds
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. NP-4768.
64.
Gudas
,
J. P.
, and
Anderson
,
D. R.
,
1981
, “
J-R Curve Characteristics of Piping Material and Welds
,” 9th Water Reactor Safety Research Information Meeting, Gaithersburg, MD, Oct. 26–30, U.S. Nuclear Regulatory Commission, Washington, DC.
65.
Hawthorne
,
J. R.
, and
Menke
,
B. H.
,
1975
, “
Influence of Delta Ferrite Content and Welding Variables on Notch Toughness of Austenitic Stainless Steel Weldments
,”
Structural Materials for Service at Elevated Temperatures in Nuclear Power Generation
,
G. V.
Smith
, ed.,
ASME
,
New York
, pp.
351
364
.
66.
Commission of the European Communities
,
1990
,
Mechanical Testing of Austenitic Steel Welded Joints: Joint Final Report
, Vol.
2
,
Commission of the European Communities
,
Ispra, Italy
.
67.
Mills
,
W. J.
,
James
,
L. A.
, and
Blackburn
,
L. D.
,
1985
, “
Results of Fracture Mechanics Tests on PNC SU 304 Plate
,” Hanford Engineering Development Laboratory, Richland, WA, Westinghouse Hanford Report No. HEDL-7544.
68.
Ould
,
P.
,
Balladon
,
P.
, and
Meyzaud
,
Y.
,
1988
, “
Fracture Toughness Properties of Austenitic Stainless Steel Welds
,”
Bull. Cercle Etud. Met.
,
15
, pp.
31.1
31.12
.
69.
Chipperfield
,
C. G.
,
1978
, “
A Toughness and Defect Size Assessment of Welded Stainless Steel Components
,”
Tolerance of Flaws in Pressurized Components
,
The Institution of Mechanical Engineers
, London, Vol. 10, pp.
125
137
, London, UK.
70.
Vassilaros
,
M. G.
,
Hays
,
R. A.
, and
Gudas
,
J. P.
,
1985
, “
Investigation of the Ductile Fracture Properties of Type 304 Stainless Steel Plate, Welds, and 4-Inch Pipe
,”
12th Water Reactor Safety Research Information Meeting, Gaithersburg, MD, Oct. 23, 1984, U.S. Nuclear Regulatory Commission
, Washington, DC, Vol.
4
, pp.
176
189
, Paper No. NUREG/CP-0058.
71.
Strangwood
,
M.
, and
Druce
,
S. G.
,
1990
, “
Aging Effects in Welded Cast CF-3 Stainless Steel
,”
Mater. Sci. Technol.
,
6
(
3
), pp.
237
248
.
72.
Wilkowski
,
G.
,
Ahmad
,
J.
,
Brust
,
F.
,
Guerrieri
,
D.
,
Kramer
,
G.
,
Kulhowvick
,
G.
,
Landow
,
M.
,
Marschall
,
C.
,
Nakagaki
,
M.
, and
Papaspyropoulos
,
V.
,
1987
, “
Analysis of Experiments on Stainless Steel Flux Welds
,” Battelle's Columbus Division, Columbus, OH, Report No.
NUREG/CR–4878
, BMI–2151.
73.
Nakagaki
,
M.
,
Marshall
,
C.
, and
Brust
,
F.
,
1986
, “
Analysis of Cracks in Stainless Steel TIG Welds
,” Battelle Columbus Laboratory, Columbus, OH, Report No.
NUREG/CR-4806
, BMI-2144.
74.
DeLong
,
W. T.
,
Ostrom
,
G.
, and
Szumachowski
,
E.
,
1956
, “
Measurement and Calculation of Ferrite in Stainless Steel Weld Metals
,”
Weld. J.
,
51
(
11
), pp.
526s
533s
.
75.
Tsuk
,
T.
,
Hubert
,
M.
, and
Messager
,
C.
,
1971
, “
Influence of Welding Heat on Residual Ferrite of Deposits of Austenitic Nickel-Chrome Steels
,”
Rev. Metall.
,
68
, pp.
829
837
.
76.
Goodwin
,
G. M.
,
Cole
,
N. C.
, and
Slaughter
,
G. M.
,
1972
, “
A Study of Ferrite Morphology in Austenitic Stainless Steel Weld Metals
,”
Weld. J.
,
51
(
9
), pp.
425s
429s
.
77.
Hull
,
F. C.
,
1973
, “
Delta Ferrite and Martensite Formation in Stainless Steels
,”
Weld. J.
,
52
(
5
), pp.
193s
203s
.
78.
Suutala
,
N.
,
Takalo
,
T.
, and
Moisio
,
T.
,
1979
, “
Relationship Between Solidification and Microstructure in Austenitic and Austenitic-Ferritic Stainless Steel Welds
,”
Metall. Trans. A
,
10
(4), pp.
512
514
.
79.
Lippold
,
J. C.
, and
Savage
,
W. F.
,
1979
, “
Solidification of Austenitic Stainless Steel Weldments: Part I-A Proposed Mechanism
,”
Weld. J.
,
59
(
12
), pp.
362s
374s
.
80.
David
,
S. A.
,
1981
, Ferrite Morphology and Variations in Ferrite Content in Austenitic Stainless Steel Welds,
Weld. Res. Suppl.
,
4
pp.
63s
71s
.
81.
Brooks
,
J. A.
,
Williams
,
J. C.
, and
Thompson
,
A. W.
,
1983
, “
Microstructural Origin of the Skeletal Ferrite Morphology of Austenite Stainless Steel Welds
,”
Metall. Trans. A
,
14
(7), pp.
1271
1281
.
82.
Olson
,
D. L.
,
1985
, “
Prediction of Austenitic Weld Metal Microstructure and Properties
,”
Weld. J.
,
59
(
12
), pp.
281s
295s
.
83.
Siewert
,
T. A.
,
McCowan
,
C. N.
, and
Olson
,
D. L.
,
1988
, “
Prediction of Austenitic Weld Metal Microstructure and Properties
,”
Weld. J.
,
59
(
12
), pp.
289s
298s
.
84.
Inoue
,
H.
, and
Koseki
,
T.
,
2007
, “
Clarification of Solidification Behaviors in Austenitic Stainless Steels Based on Welding Process
,” Steel Research Laboratories, Nippon Steel Corporation, Tokyo, Nippon Steel Technical Report No. 95.
85.
Abe
,
H.
, and
Watanabe
,
Y.
,
2008
, “
Low-Temperature Aging Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode
,”
Metall. Mater. Trans. A
,
39
(6), pp.
1392
1398
.
86.
ASTM
,
2001
, “
Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof
,”
American Society of Testing and Materials
,
West Conshohocken, PA
, ASTM Standard No. A 800/A 800M.
87.
Schoefer
,
E. A.
,
1974
, “
A Diagram for Estimation of Ferrite Content in Stainless Steel Castings
,”
Appendix to Mossbauer-Effect Examination of Ferrite in Stainless Steel Welds and Castings
, by L. J. Schwartzgruber et al., Weld. J.,
53
, pp.
10s
12s
.
88.
Davies
,
G. J.
,
1973
,
Solidification and Casting
,
Applied Science Publishers, Ltd.
, London.
89.
AWS
,
1974
, “
Standard Procedures for Calibrating Magnetic Instruments to Measure Delta Ferrite Content of Austenitic Stainless Steel Weld Metal
,”
American Welding Society
,
Miami, FL
, Standard No. A4.2-74.
90.
Schaeffler
,
A. L.
,
1947
, “
Selection of Austenitic Electrodes for Welding Dissimilar Metals
,”
Weld. J.
,
26
(
10
), pp.
601
620
.
91.
DeLong
,
W. T.
,
1974
, “
Ferrite in Austenitic Stainless Steel Weld Metal
,”
Weld. J.
,
53
(
7
), pp.
273s
286s
.
92.
Fredricksson
,
H.
,
1972
, “
The Solidification Sequence in an 18-8 Stainless Steel, Investigated by Directional Solidification
,”
Met. Trans.
,
3
(
11
), pp.
2898
2997
.
93.
Heger
,
J. J.
,
1951
, “
885 °F Embrittlement of the Ferritic Chromium-Iron Alloys
,”
Met. Prog.
,
60
(2), pp.
55
61
.
94.
Lagneborg
,
R.
,
1957
, “
Metallography of the 475 °C Embrittlement in an Iron-30% Chromium Alloy
,”
Trans. ASM
,
60
, pp.
67
68
.
95.
Grobner
,
P. J.
,
1973
, “
The 885°F (475 °C) Embrittlement of Ferritic Stainless Steels
,”
Metall. Trans. A
,
4
(1), pp.
251
260
.
96.
Nichol
,
T. J.
,
Datta
,
A.
, and
Aggen
,
G.
,
1980
, “
Embrittlement of Ferritic Stainless Steels
,”
Metall. Trans. A
,
11A
(4), pp.
573
585
.
97.
Server
,
W. L.
,
1978
, “
Impact Three-Point Bend Testing for Notched and Precracked Specimens
,”
J. Test. Eval.
,
6
(1), p.
29
.
98.
Hiser
,
A. L.
, and
Callahan
,
G. M.
,
1987
, “
A User's Guide to the NRC's Piping Fracture Mechanics Database (PIFRAC)
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-4894.
99.
Wilkowski
,
G. M.
,
Brust
,
F.
,
Francini
,
R.
,
Ghadiali
,
N.
,
Kilinski
,
T.
,
Krishnaswamy
,
P.
,
Landow
,
M.
,
Marschall
,
C. W.
,
Rahman
,
S.
, and
Scott
,
P.
,
1993
, “
Short Cracks in Piping and Piping Welds
,” Battelle's Columbus Division, Columbus, OH, Report No.
NUREG/CR-4599
, BMI-2173.
100.
Rahman
,
S.
,
Ghadiali
,
N.
,
Paul
,
D.
, and
Wilkowski
,
G. M.
,
1995
, “
Probabilistic Pipe Fracture Evaluations for Leak-Rate-Detection Applications
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No.
NUREG/CR-6004
.
101.
Hiser
,
A. L.
,
Loss
,
F. J.
, and
Menke
,
B. H.
,
1984
, “
J-R Curve Characterization of Irradiated Low Upper Shelf Welds
,” Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-3506.
102.
Lucas
,
T.
,
Ballinger
,
R. G.
,
Hanninen
,
H.
, and
Saukkonen
,
T.
,
2011
, “
Effect of Thermal Aging on SCC, Material Properties and Fracture Toughness of Stainless Steel Weld Metals
,”
15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors
, Colorado Springs, CO, July 31–Aug. 5,
Jeremy T.
Busby
,
Gabriel
Ilevbare
, and
Peter L.
Andresen
, eds.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
883
900
.
103.
Hojo
,
K.
,
Muroya
,
I.
,
Kawaguchi
,
S.
,
Koyama
,
K.
, and
Sakai
,
K.
,
1997
, “
Application of the Two-Criteria Approach to the Austenitic Cast Stainless Steel Pipe
,”
5th International Conference on Nuclear Engineering (ICONE-5)
, Nice, France, May 25–29, Paper No. ICONE5-2379,
American Society of Mechanical Engineers
,
New York
.
104.
JNES-SS
,
2006
, “
Investigation Report on the Integrity of Thermally-Embrittled Cast Stainless Steel Pipe
,” Nuclear Energy System Safety Division, Japan Nuclear Energy Safety Organization, Tokyo, Report No. JNES-SS-0602.
105.
Balladon
,
P.
,
Heritier
,
J.
, and
Rabbe
,
P.
,
1983
, “
Influence of Microstructure on the Ductile Rupture Mechanisms of a 316L Steel at Room and Elevated Temperatures
,”
Fracture Mechanics: 14th Symposium
, Vol.
II
: Testing and Applications, Los Angeles, CA, June 30–July 2,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
496
516
.
106.
Michel
,
D. J.
, and
Gray
,
R. A.
,
1987
, “
Effects of Irradiation on the Fracture Toughness of FBR Structural Materials
,”
J. Nucl. Mater.
,
148
(
2
), pp.
194
203
.
107.
Haggag
,
F. M.
,
Corwin
,
W. R.
, and
Nanstad
,
R. K.
,
1990
, “
Effects of Irradiation on the Fracture Properties of Stainless Steel Weld Overlay Cladding
,”
Nucl. Eng. Des.
,
124
(
1–2
), pp.
129
141
.
108.
Sindelar
,
R. L.
,
Caskey
,
G. R.
, Jr.
,
Thomas
,
J. K.
,
Hawthorne
,
J. R.
,
Hiser
,
A. L.
,
Lott
,
R. A.
,
Begley
,
J. A.
, and
Shogan
,
R. P.
,
1993
, “
Mechanical Properties of 1950s Vintage Type 304 Stainless Steel Weldment Components After Low Temperature Neutron Irradiation
,”
16th International Symposium on Effects of Radiation on Materials
, Aurora, CO, June 23–25,
American Society of Testing and Materials
,
Philadelphia, PA
, pp.
714
746
.
109.
Sindelar
,
R. L.
,
Lam
,
P.
,
Duncan
,
A. J.
,
Wiersma
,
B. J.
,
Subramanian
,
K. H.
, and
Edler
,
J. B.
,
2007
, “
Development and Application of Materials Properties for Flaw Stability Analysis in Extreme Environment Service
,”
ASME
Paper No. PVP2007-26660.
110.
Chen
,
Y.
,
2014
, personal communication from Yiren Chen (Argonne) to Omesh Chopra (Argonne).
111.
Picker
,
C.
,
Stott
,
A. L.
, and
Cocks
,
H.
,
1983
, “
Effects of Low-Dose Fast Neutron Irradiation on the Fracture Toughness of Type 316 Stainless Steel and Weld Metal
,” IAEA Specialists Meeting on Mechanical Properties of Fast Reactor Structural Materials, Chester, UK, Oct. 10–14, Paper No. IWGFR 49/440-4.
112.
Morra
,
M.
,
2010
, “
Program on Technology Innovation: Scoping Study of Low Temperature Crack Propagation for 182 Weld Metal in BWR Environments and for Cast Austenitic Stainless Steel in PWR Environments (Revision 1)
,” Electric Power Research Institute, Palo Alto, CA,
EPRI
Report No. 1020957.
113.
Mills
,
W. J.
, and
Brown
,
C. M.
,
2001
, “
Fracture Toughness of Alloy 600 and an EN82H Weld in Air and Water
,”
Metall. Mater. Trans. A
,
32
(5), pp.
1161
1174
.
114.
Brown
,
C. M.
, and
Mills
,
W. J.
,
2002
, “
Fracture Toughness of Alloy 690 and EN52 Welds in Air and Water
,”
Metall. Mater. Trans. A,
33
(6), pp.
1725
1735
.
115.
Nakajima
,
N.
,
Shima
,
S.
,
Nakajima
,
H.
, and
Kondo
,
T.
,
1986
, “
The Fracture Toughness of Sensitized 304 Stainless Steel in Simulated Reactor Water
,”
Nucl. Eng. Des.
,
93
(
1
), pp.
95
106
.
You do not currently have access to this content.