Abstract

Modern vehicles are connected to the network and between each other through smart sensors and smart objects commonly present on board. This situation has allowed manufacturers to send over-the-air updates, receive diagnostic information, and offer various multimedia services. More generally, at present, all this is indicated by the term “Vehicle to Everything” (V2X), which indicates a system of communication between a vehicle and any entity that may influence the vehicle and vice versa. However, it introduces problems regarding the vehicle's IT security. It is possible, for example, by tampering with one of the electronic control units (ECUs) to take partial or total control of the vehicle. In this paper, we introduce a preliminary study case of a probabilistic approach in an intrusion detection system over the CAN-bus to guarantee cybersecurity inside connected vehicles. In particular, through the use of an innovative two-step detection algorithm that exploits both the variation of the status parameters of the various ECUs over time and the Bayesian networks can identify a possible attack. Starting from a domain analysis is possible to find out what are the parameters of interests and how these are related to each other. The first experimental results seem encouraging.

References

1.
Lombardi
,
M.
,
Pascale
,
F.
, and
Santaniello
,
D.
,
2021
, “
Internet of Things: A General Overview Between Architectures, Protocols and Applications
,”
Information
,
12
(
2
), p.
87
.10.3390/info12020087
2.
Lu
,
Y.
, and
Xu
,
L. D.
, April
2019
, “
Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics
,”
IEEE Internet Things J.
,
6
(
2
), pp.
2103
2115
.10.1109/JIOT.2018.2869847
3.
Botte
,
M.
,
Pariota
,
L.
,
D'Acierno
,
L.
, and
Bifulco
,
G. N.
,
2018
, “
C-ITS Communication: An Insight on the Current Research Activities in the European Union
,”
Int. J. Transport. Syst.
,
3
, p. 52.https://www.researchgate.net/publication/333516380_CITS_communication_An_insight_on_the_current_research_activities_in_the_European_Union
4.
Nzabahimana
,
J. P.
,
2018
, “
Analysis of Security and Privacy Challenges in Internet of Things
,” IEEE Ninth International Conference on Dependable Systems, Services and Technologies (
DESSERT
), May 24–27, Kyiv, Ukraine, pp.
175
178
.10.1109/DESSERT.2018.8409122
5.
Whitman
,
M. E.
, and
Mattord
,
H. J.
,
2011
,
Principles of Information Security
, 4th ed.,
Course Technology
,
Boston, MA
.
6.
Chhawri
,
S.
,
Tarnutzer
,
S.
,
Tasky
,
T.
, and
Lane
,
G. R.
,
2017
, “
Smart Vehicles, Automotive Cyber Security & Software Safety Applied to Leader-Follower (LF) and Autonomous Convoy Operations
,”
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
.
7.
Buczak
,
A. L.
, and
Guven
,
E.
,
2016
, “
A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection
,”
IEEE Commun. Surv. Tutorials
,
18
(
2
), pp.
1153
1176
.10.1109/COMST.2015.2494502
8.
Xin
,
Y.
,
Kong
,
L.
,
Liu
,
Z.
,
Chen
,
Y.
,
Li
,
Y.
,
Zhu
,
H.
,
Gao
,
M.
,
Hou
,
H.
, and
Wang
,
C.
,
2018
, “
Machine Learning and Deep Learning Methods for Cybersecurity
,”
IEEE Access
,
6
, pp.
35365
35381
.10.1109/ACCESS.2018.2836950
9.
Azwar
,
H.
,
Murtaz
,
M.
,
Siddique
,
M.
, and
Rehman
,
S.
,
2018
, “
Intrusion Detection in Secure Network for Cybersecurity Systems Using Machine Learning and Data Mining
,” IEEE Fifth International Conference on Engineering Technologies and Applied Sciences (
ICETAS
),
Bangkok, Thailand
, Nov. 22–23, pp.
1
9
.10.1109/ICETAS.2018.8629197
10.
Lokman
,
S.
,
Othman
,
A. T.
, and
Abu-Bakar
,
M.
,
2019
, “
Intrusion Detection System for Automotive Controller Area Network (CAN) Bus System: A Review
,”
J. Wireless Com. Network
,
2019
(
1
), p.
184
.10.1186/s13638-019-1484-3
11.
Kulandaivel
,
S.
,
Goyal
,
T.
,
Agrawal
,
A. K.
, and
Sekar
,
V.
,
2019
, “
Canvas: Fast and Inexpensive Automotive Network Mapping
,”
28th {USENIX} Security Symposium ({USENIX} Security 19)
pp.
389
405
.
12.
Lin
,
C.-W.
, and
Sangiovanni-Vincentelli
,
A.
,
2012
, “
Cyber-Security for the Controller Area Network (Can) Communication Protocol
,”
In 2012 Inter- National Conference on Cyber Security
, Alexandria, VA, Dec. 14–16, pp.
1
7
.
10.1109/CyberSecurity.2012.7
13.
Fowler
,
D. S.
,
Cheah
,
M.
,
Shaikh
,
S. A.
, and
Bryans
,
J.
,
2017
, “
Towards a Testbed for Automotive Cybersecurity
,” IEEE International Conference on Software Testing, Verification and Validation (
ICST
),
IEEE
, Tokyo, Japan, Mar. 13–17, pp.
540
541
.10.1109/ICST.2017.62
14.
Hoppe
,
T.
,
Kiltz
,
S.
, and
Dittmann
,
J.
,
2011
, “
Security Threats to Automotive Can Networks—Practical Examples and Selected Short- Term Counter Measures
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
11
25
.10.1016/j.ress.2010.06.026
15.
Koscher
,
K.
,
Czeskis
,
A.
,
Roesner
,
F.
,
Patel
,
S.
,
Kohno
,
T.
,
Checkoway
,
S.
,
McCoy
,
D.
2010
, “
Experimental Security Analysis of a Modern Automobile
,”
IEEE Symposium on Security and Privacy
, Oakland, CA, May 16-19, pp.
447
462
.10.1109/SP.2010.34
16.
Onishi
,
H.
,
2012
, “
Paradigm Change of Vehicle Cyber Security
,” Fourth International Conference on Cyber Conflict (
CYCON 2012
),
IEEE
, Tallinn, Estonia, June 5–8, pp.
1
11
.https://ieeexplore.ieee.org/document/6243987
17.
Reilly
,
J.
,
Martin
,
S.
,
Payer
,
M.
, and
Bayen
,
A.
,
2014
, “
On Cybersecurity of Freeway Control Systems: Analysis of Coordinated Ramp Metering Attacks
,” Transport. Res., Part B.
18.
Li
,
R.
,
Liu
,
C.
, and
Luo
,
F.
,
2008
, “
A Design for Automotive Can Bus Monitoring System
,”
IEEE Vehicle Power and Propulsion Conference
,
IEEE
, Harbin, China, Sept. 3–5, pp.
1
5
.10.1109/VPPC.2008.4677544
19.
Zalman
,
R.
, and
Mayer
,
A.
,
2014
, “
A Secure but Still Safe and Low Cost Auto- Motive Communication Technique
,”
Proceedings of the 51st Annual Design Automation Conference
,
ACM
, San Francisco, CA, June 1–5, pp.
1
5
.10.1145/2593069.2603850
20.
Olufowobi
,
H.
,
Young
,
C.
,
Zambreno
,
J.
, and
Bloom
,
G.
,
2020
, “
SAIDuCANT: Specification-Based Automotive Intrusion Detection Using Controller Area Network (CAN) Timing
,”
IEEE Trans. Veh. Technol.
,
69
(
2
), pp.
1484
1494
.10.1109/TVT.2019.2961344
21.
Levi
,
M.
,
Allouche
,
Y.
, and
Kontorovich
,
A.
,
2018
, “
Advanced Analytics for Connected Car Cybersecurity
,”
IEEE Vehicle Technology Conference
, Porto, Portugal, June 3–6, pp.
1
7
.10.1109/VTCSpring.2018.8417690
22.
Huang
,
J.
,
Zhao
,
M.
,
Zhou
,
Y.
, and
Xing
,
C.
,
2019
, “
In-Vehicle Networking: Protocols, Challenges, and Solutions
,” pp.
92
98
.
23.
Macher
,
G.
,
Armengaud
,
E.
,
Brenner
,
E.
, and
Kreiner
,
C.
,
2016
, “
Threat and Risk Assessment Methodologies in the Automotive Domain
,”
Procedia Comput. Sci.
,
83
, pp.
1288
1294
.10.1016/j.procs.2016.04.268
24.
Smith
,
C.
,
2016
,
The Car Hacker's Handbook: A Guide for the Penetration Tester
,
No Starch Press
.
25.
Carsten
,
P.
,
Andel
,
T. R.
,
Yampolskiy
,
M.
, and
McDonald
,
J. T.
,
2015
, “
In-Vehicle Networks: Attacks, Vulnerabilities, and Proposed Solutions
,”
ACM's International Conference Proceedings Series
.
26.
Syzdykbayev
,
M.
,
Hajari
,
H.
, and
Karimi
,
H. A.
,
2019
, “
An Ontology for Collaborative Navigation Among Autonomous Cars, Drivers, and Pedestrians in Smart Cities
,”
Fourth International Conference on Smart and Sustainable Technologies (SpliTech)
,
Split, Croatia
, pp.
1
6
.
27.
Klotz
,
B.
,
Datta
,
S. K.
,
Wilms
,
D.
,
Troncy
,
R.
, and
Bonnet
,
C.
,
2018
, “
A Car as a Semantic Web Thing: Motivation and Demonstration
,”
Global Internet of Things Summit (GIoTS)
,
Bilbao, Spain
, pp.
1
6
.
28.
Klotz
,
B.
,
Troncy
,
R.
,
Wilms
,
D.
, and
Bonnet
,
C.
,
2018
, “
VSSo: A Vehicle Signal and Attribute Ontology
,”
Ninth International Semantic Sensor Networks Workshop
,
Monterey, CA
.https://ssn2018.github.io/submissions/SSN2018_paper_4_submitted.pdf
29.
Colace
,
F.
, and
De Santo
,
M.
, May
2010
, “
Ontology for E-Learning: A Bayesian Approach
,”
IEEE Trans. Educ.
,
53
(
2
), pp.
223
233
.10.1109/TE.2009.2012537
30.
Colace
,
F.
,
De Santo
,
M.
, and
Vento
,
M.
,
2010
, “
A MultiExpert Approach for Bayesian Network Structural Learning
,”
43rd Hawaii International Conference on System Sciences
,
Honolulu, HI
, pp.
1
11
.
31.
Colace
,
F.
,
Lombardi
,
M.
,
Pascale
,
F.
,
Santaniello
,
D.
,
Tucker
,
A.
, and
Villani
,
P.
,
2018
, “
MuG: A Multilevel Graph Representation for Big Data Interpretation
,” IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE Fourth International Conference on Data Science and Systems (
HPCC/SmartCity/DSS
),
Exeter, UK
, June 28–30, pp.
1408
1413
.10.1109/HPCC/SmartCity/DSS.2018.00233
32.
Colace
,
F.
,
De Santo
,
M.
,
Lombardi
,
M.
,
Pascale
,
F.
,
Santaniello
,
D.
, and
Tucker
,
A.
,
2020
, “
A Multilevel Graph Approach for Predicting Bicycle Usage in London Area
,”
Fourth International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing
,
X. S.
Yang
,
S.
Sherratt
,
N.
Dey
,
A.
Joshi
, eds., Vol.
1027
,
Springer
,
Singapore
.
33.
Colace
,
F.
,
Lombardi
,
M.
,
Pascale
,
F.
, and
Santaniello
,
D.
,
2018
, “
A Multilevel Graph Representation for Big Data Interpretation in Real Scenarios
,”
Third International Conference on System Reliability and Safety (ICSRS)
,
Barcelona, Spain
, pp.
40
47
.
34.
Colace
,
F.
,
Lombardi
,
M.
,
Pascale
,
F.
, and
Santaniello
,
D.
,
2018
, “
A Multi-Level Approach for Forecasting Critical Events in Smart Cities
,”
24th International DMS Conference on Visualization and Visual Languages
, pp.
45
46
.
35.
Casillo
,
M.
,
Coppola
,
S.
,
De Santo
,
M.
,
Pascale
,
F.
, and
Santonicola
,
E.
,
2019
, “
Embedded Intrusion Detection System for Detecting Attacks Over CAN-BUS
,”
Fourth International Conference on System Reliability and Safety (ICSRS)
,
Rome, Italy
, pp.
136
141
.
36.
Lombardi
,
M.
,
Pascale
,
F.
, and
Santaniello
,
D.
,
2020
, “
EIDS: Embedded Intrusion Detection System Using Machine Learning to Detect Attack Over the CAN-BUS
,”
Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference
,
Venice, Italy
.
37.
Pascale
,
F.
,
Adinolfi
,
E. A.
,
Coppola
,
S.
, and
Santonicola
,
E.
,
2021
, “
Cybersecurity in Automotive: An Intrusion Detection System in Connected Vehicles
,”
Electronics
,
10
(
15
), p.
1765
.10.3390/electronics10151765
38.
Castiglione
,
A.
,
Palmieri
,
F.
,
Colace
,
F.
,
Lombardi
,
M.
,
Santaniello
,
D.
, and
D'Aniello
,
G.
,
2020
, “
Securing the Internet of Vehicles Through Lightweight Block Ciphers
,”
Pattern Recognit. Lett.
,
135
, pp.
264
270
.10.1016/j.patrec.2020.04.038
39.
Dosovitskiy
,
A.
,
Ros
,
G.
,
Codevilla
,
F.
,
Lopez
,
A.
, and
Koltun
,
V.
,
2017
, “
CARLA: An Open Urban Driving Simulator
,” arXiv preprint arXiv:1711.03938.
40.
Mhetre
,
V.
, and
Nagar
,
M.
,
2017
, “
Classification Based Data Mining Algorithms to Predict Slow, Average and Fast Learners in Educational System Using WEKA
,”
International Conference on Computing Methodologies and Communication (ICCMC)
,
Erode
, pp.
475
479
.
41.
Ertam
,
F.
, and
Aydın
,
G.
,
2017
, “
Data Classification With Deep Learning Using Tensorflow
,” International Conference on Computer Science and Engineering (
UBMK
),
Antalya, Turkey
, Oct. 5–8, pp.
755
758
.10.1109/UBMK.2017.8093521
You do not currently have access to this content.