Abstract

Dynamic window approach (DWA) is one of the most widely used algorithms for local path planning and autonomous navigation. Although many successful examples have been shown under various operation conditions, to the authors' best knowledge, there is a lack of systematic reliability analysis, its further design improvement, and systems operation guidelines for meeting reliability requirement under different operation conditions. Several goals can be defined for a successful path planning and autonomous navigation. Among them, assurance of the collision avoidance and reaching the goal with less time are pivotal requirements, yet such reliability analysis is rarely conducted in a rigorous manner. Furthermore, design improvement and systems operation design based on rigorous reliability analysis can hardly be found in this area. This paper addresses such a research gap for autonomous navigation reliability analysis and further conducts design improvement and characterizes systems operation conditions for meeting the collision avoidance reliability using the DWA. To address the technical challenges associated with limited number of simulations or experiments, reliability analysis is conducted using Bayesian statistics combined with the Monte Carlo simulation (MCS). Design improvement and reliable operation conditions can then be conducted based on the reliability analysis. Results indicate that performance reliability of the DWA is sensitive to its parameter configuration, which can be improved through reliability-based design optimization. With characterized collision avoidance reliability constraints, performance reliability of the DWA can be ensured through adjusting its operation parameters.

References

1.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.10.1109/TSSC.1968.300136
2.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Int. J. Rob. Res.
,
5
(
1
), pp.
90
98
.10.1177/027836498600500106
3.
Borenstein
,
J.
, and
Koren
,
Y.
,
1991
, “
The Vector Field Histogram—Fast Obstacle Avoidance for Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
7
(
3
), pp.
278
288
.10.1109/70.88137
4.
Fox
,
D.
,
Burgard
,
W.
, and
Thrun
,
S.
,
1997
, “
The Dynamic Window Approach to Collision Avoidance
,”
IEEE Rob. Autom. Mag.
,
4
(
1
), pp.
23
33
.10.1109/100.580977
5.
Fiorini
,
P.
, and
Shiller
,
Z.
,
1998
, “
Motion Planning in Dynamic Environments Using Velocity Obstacles
,”
Int. J. Rob. Res.
,
17
(
7
), pp.
760
772
.10.1177/027836499801700706
6.
Rösmann
,
C.
,
Feiten
,
W.
,
Wösch
,
T.
,
Hoffmann
,
F.
, and
Bertram
,
T.
,
2012
, “
Trajectory Modification Considering Dynamic Constraints of Autonomous Robots
,”
Seventh German Conference on Robotics (ROBOTIK 2012)
, Munich, Germany, May 21–22, pp.
74
79
.https://ieeexplore.ieee.org/document/6309484
7.
Missura
,
M.
, and
Bennewitz
,
M.
,
2019
, “
Predictive Collision Avoidance for the Dynamic Window Approach
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Montreal, QC, Canada, May 20–24, pp.
8620
8626
.10.1109/ICRA.2019.8794386
8.
Mccarthy
,
R. L.
,
2022
, “
Autonomous Vehicle Accident Data Analysis: California OL 316 Reports: 2015-2020
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
3
), p.
034502
.10.1115/1.4051779
9.
Ames
,
A. D.
,
Xu
,
X.
,
Grizzle
,
J. W.
, and
Tabuada
,
P.
,
2017
, “
Control Barrier Function Based Quadratic Programs for Safety Critical Systems
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
3861
3876
.10.1109/TAC.2016.2638961
10.
Herbert
,
S. L.
,
Chen
,
M.
,
Han
,
S.
,
Bansal
,
S.
,
Fisac
,
J. F.
, and
Tomlin
,
C. J.
,
2018
, “
FaSTrack: A Modular Framework for Fast and Guaranteed Safe Motion Planning
,”
2017 IEEE 56th Annual Conference on Decision and Control (CDC 2017)
, Melbourne, VIC, Australia, Dec. 12–15, pp.
1517
1522
.10.1109/CDC.2017.8263867
11.
Chen
,
M.
,
Herbert
,
S. L.
,
Hu
,
H.
,
Pu
,
Y.
,
Fisac
,
J. F.
,
Bansal
,
S.
,
Han
,
S.
, and
Tomlin
,
C. J.
,
2021
, “
FaSTrack: A Modular Framework for Real-Time Motion Planning and Guaranteed Safe Tracking
,”
IEEE Trans. Autom. Control
,
66
(
12
), pp.
5861
5876
.10.1109/TAC.2021.3059838
12.
Althoff
,
M.
, and
Dolan
,
J. M.
,
2014
, “
Online Verification of Automated Road Vehicles Using Reachability Analysis
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
903
918
.10.1109/TRO.2014.2312453
13.
Sontges
,
S.
, and
Althoff
,
M.
,
2018
, “
Computing the Drivable Area of Autonomous Road Vehicles in Dynamic Road Scenes
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
6
), pp.
1855
1866
.10.1109/TITS.2017.2742141
14.
Manzinger
,
S.
,
Pek
,
C.
, and
Althoff
,
M.
,
2021
, “
Using Reachable Sets for Trajectory Planning of Automated Vehicles
,”
IEEE Trans. Intell. Veh.
,
6
(
2
), pp.
232
248
.10.1109/TIV.2020.3017342
15.
Nguyen
,
Q.
, and
Sreenath
,
K.
,
2021
, “
Robust Safety-Critical Control for Dynamic Robotics
,”
IEEE Trans. Autom. Control
,
67
(
3
), pp.
1073
1088
.10.1109/TAC.2021.3059156
16.
Ren
,
L.
, and
Xi
,
Z.
,
2021
, “
Design of Path Tracking Controller for Autonomous Vehicles Through Bias Learning of Vehicle Dynamic Models Under Environmental Uncertainty
,”
ASME
Paper No. DETC2021-69284.10.1115/DETC2021-69284
17.
Abdo
,
J.
,
Hamblin
,
S.
, and
Chen
,
G.
,
2022
, “
Effective Range Assessment of Lidar Imaging Systems for Autonomous Vehicles Under Adverse Weather Conditions With Stationary Vehicles
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
3
), p.
031103
.10.1115/1.4052228
18.
Brock
,
O.
, and
Khatib
,
O.
,
1999
, “
High-Speed Navigation Using the Global Dynamic Window Approach
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, Detroit, MI, May 10–15, pp.
341
346
.10.1109/ROBOT.1999.770002
19.
Minguez
,
J.
, and
Montano
,
L.
,
2004
, “
Nearness Diagram (ND) Navigation: Collision Avoidance in Troublesome Scenarios
,”
IEEE Trans. Rob. Autom.
,
20
(
1
), pp.
45
59
.10.1109/TRA.2003.820849
20.
Ögren
,
P.
, and
Leonard
,
N. E.
,
2005
, “
A Convergent Dynamic Window Approach to Obstacle Avoidance
,”
IEEE Trans. Rob.
,
21
(
2
), pp.
188
195
.10.1109/TRO.2004.838008
21.
Vista
,
F. P.
, IV
,
Singh
,
A. M.
,
Lee
,
D.
, and
Chong
,
K. T.
,
2014
, “
Design Convergent Dynamic Window Approach for Quadrotor Navigation
,”
Int. J. Precis. Eng. Manuf.
,
15
(
10
), pp.
2177
2184
.10.1007/s12541-014-0579-3
22.
Trautman
,
P.
,
Ma
,
J.
,
Murray
,
R. M.
, and
Krause
,
A.
,
2015
, “
Robot Navigation in Dense Human Crowds: Statistical Models and Experimental Studies of Human-Robot Cooperation
,”
Int. J. Rob. Res.
,
34
(
3
), pp.
335
356
.10.1177/0278364914557874
23.
Lopes
,
A. C.
,
Rodrigues
,
J.
,
Perdigão
,
J.
,
Pires
,
G.
, and
Nunes
,
U. J.
,
2016
, “
A New Hybrid Motion Planner
,”
IEEE Rob. Autom. Mag.
,
23
(
4
), pp.
82
93
.10.1109/MRA.2016.2605403
24.
Cruz
,
A.
,
Pires
,
G.
,
Lopes
,
A.
,
Carona
,
C.
, and
Nunes
,
U. J.
,
2021
, “
A Self-Paced BCI With a Collaborative Controller for Highly Reliable Wheelchair Driving: Experimental Tests With Physically Disabled Individuals
,”
IEEE Trans. Hum.-Mach. Syst.
,
51
(
2
), pp.
109
119
.10.1109/THMS.2020.3047597
25.
Ballesteros
,
J.
,
Urdiales
,
C.
,
Velasco
,
A. B. M.
, and
Ramos-Jimenez
,
G.
,
2017
, “
A Biomimetical Dynamic Window Approach to Navigation for Collaborative Control
,”
IEEE Trans. Hum.-Mach. Syst.
,
47
(
6
), pp.
1123
1133
.10.1109/THMS.2017.2700633
26.
Santos
,
M. F.
, and
Victorino
,
A. C.
,
2021
, “
Autonomous Vehicle Navigation Based in a Hybrid Methodology: Model Based and Machine Learning Based
,”
2021 IEEE International Conference on Mechatronics (ICM 2021)
, Kashiwa, Japan, Mar. 7–9, pp.
1
6
.10.1109/ICM46511.2021.9385629
27.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.10.1007/s00158-007-0210-7
28.
Dubreuil
,
S.
,
Bartoli
,
N.
,
Gogu
,
C.
, and
Lefebvre
,
T.
,
2016
, “
Propagation of Modeling Uncertainty by Polynomial Chaos Expansion in Multidisciplinary Analysis
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111411
.10.1115/1.4034110
29.
Wang
,
P.
,
Youn
,
B. D.
,
Xi
,
Z.
, and
Kloess
,
A.
,
2009
, “
Bayesian Reliability Analysis With Evolving, Insufficient, and Subjective Data Sets
,”
ASME J. Mech. Des.
,
131
(
11
), p.
111008
.10.1115/1.4000251
30.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
.10.1115/1.4041946
You do not currently have access to this content.