Abstract

Next generation concentrating solar power (CSP) systems, which utilize solid particles for energy capture, transport, and storage, offer prospects for higher temperature operation, improved efficiency, and reduced overall costs. Nevertheless, the continuous impingement of particles on component materials can result in substantial erosion, significantly constraining the performance and longevity of the components. A comprehensive understanding of particle erosion on surfaces is essential for designing components and operational parameters or coatings that minimize wear. This study presents a computational physics-based particle tracking model of the erosion rate of incident surfaces under different geometric, operational, and particle parameters. The computational model is validated with experimental measurements conducted as part of the study. Computational simulations are presented to elucidate the effects of each parameter and further used to investigate erosion rates in a systematic design of experiments covering a wide range of parameters. Based on the simulation results, a generalized analytical model is developed to relate erosion wear to pertinent dimensionless groups governing the physics of the process. The analytical model is shown to be accurate to within 10% and its use in understanding surface erosion as well as designing wear-resistant coatings to limit erosion within acceptable values is presented.

References

1.
Sment
,
J. N.
,
Harvey
,
T.
,
Albrecht
,
K. J.
,
Ho
,
C. K.
,
Davidson
,
M.
,
Lambert
,
M.
, and
Bateman
,
B.
,
2022
, “
Design Considerations for Commercial Scale Particle-Based Thermal Energy Storage Systems
,”
AIP Conf. Proc.
,
2445
(
1
), p.
160016
.
2.
Ma
,
Z.
,
Glatzmaier
,
G.
, and
Mehos
,
M.
,
2014
, “
Fluidized Bed Technology for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031014
.
3.
Ma
,
Z.
,
Mehos
,
M.
,
Glatzmaier
,
G.
, and
Sakadjian
,
B. B.
,
2015
, “
Development of a Concentrating Solar Power System Using Fluidized-Bed Technology for Thermal Energy Conversion and Solid Particles for Thermal Energy Storage
,”
Energy Procedia
,
69
, pp.
1349
1359
.
4.
Siegel
,
N.
, and
Kolb
,
G.
,
2008
, “
Design and On-Sun Testing of a Solid Particle Receiver Prototype
,”
ASME 2008 2nd International Conference on Energy Sustainability
,
Jacksonville, FL
,
Aug. 10–14
, Vol. 2, pp.
329
334
.
5.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2017
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021011
.
6.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Properties of Granular Materials as Heat Transfer and Storage Medium in CSP Application
,”
Sol. Energy Mater. Sol. Cells
,
143
, pp.
38
47
.
7.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “Concentrating Solar Power Gen3 Demonstration Roadmap,”
Golden, CO
, pp.
1
140
.
8.
Kant
,
K.
, and
Pitchumani
,
R.
,
2024
, “
Erosion Wear Analysis of Heat Exchange Surfaces in a Falling Particle-Based Concentrating Solar Power System
,”
Sol. Energy Mater. Sol. Cells
,
266
, p.
112629
.
9.
SNL
,
2023
, “Gen 3 Particle Pilot Plant (G3P3),” Sandia National Lab (DOE CSP G3P3), https://energy.sandia.gov/programs/renewable-energy/csp/current-research-projects/gen-3-particle-pilot-plant-g3p3/, Accessed January 10, 2024.
10.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
, “Wear by Hard Particles,”
Tribology
, 2nd ed.,
Elsevier
,
New York
, pp.
165
236
.
11.
Misra
,
A.
, and
Finnie
,
I.
,
1981
, “
On the Size Effect in Abrasive and Erosive Wear
,”
Wear
,
65
(
3
), pp.
359
373
.
12.
Arabnejad
,
H.
,
Shirazi
,
S. A.
,
McLaury
,
B. S.
,
Subramani
,
H. J.
, and
Rhyne
,
L. D.
,
2015
, “
The Effect of Erodent Particle Hardness on the Erosion of Stainless Steel
,”
Wear
,
332–333
, pp.
1098
1103
.
13.
Oka
,
Y. I.
,
Matsumura
,
M.
, and
Kawabata
,
T.
,
1993
, “
Relationship Between Surface Hardness and Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
162–164
, Part B, pp.
688
695
.
14.
Sheldon
,
G. L.
,
1977
, “
Effects of Surface Hardness and Other Material Properties on Erosive Wear of Metals by Solid Particles
,”
ASME J. Eng. Mater. Technol.
,
99
(
2
), pp.
133
137
.
15.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
16.
Finnie
,
I.
, and
McFadden
,
D. H.
,
1978
, “
On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence
,”
Wear
,
48
(
1
), pp.
181
190
.
17.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.
18.
Galiullin
,
T.
,
Gobereit
,
B.
,
Naumenko
,
D.
,
Buck
,
R.
,
Amsbeck
,
L.
,
Neises-von Puttkamer
,
M.
, and
Quadakkers
,
W. J.
,
2019
, “
High Temperature Oxidation and Erosion of Candidate Materials for Particle Receivers of Concentrated Solar Power Tower Systems
,”
Sol. Energy
,
188
, pp.
883
889
.
19.
Ho
,
C. K.
,
Christian
,
J. M.
,
Yellowhair
,
J. E.
,
Armijo
,
K.
,
Kolb
,
W. J.
,
Jeter
,
S.
,
Golob
,
M.
, and
Nguyen
,
C.
,
2019
, “
ON-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011009
.
20.
Gietzen
,
E.
,
Karimi
,
S.
,
Goel
,
N.
,
Shirazi
,
S. A.
,
Keller
,
M.
, and
Otanicar
,
T.
,
2022
, “
Experimental Investigation of Low Velocity and High Temperature Solid Particle Impact Erosion Wear
,”
Wear
,
506–507
, p.
204441
.
21.
Lyczkowski
,
R. W.
, and
Bouillard
,
J. X.
,
2002
, “
Scaling and Guidelines for Erosion in Fluidized Beds
,”
Powder Technol.
,
125
(
2–3
), pp.
217
225
.
22.
Li
,
C.
, and
Zakkay
,
V.
,
1994
, “
Hydrodynamics and Erosion Modeling of Fluidized Bed Combustors
,”
ASME J. Fluids Eng.
,
116
(
4
), pp.
746
755
.
23.
Xu
,
L.
,
Luo
,
K.
,
Zhao
,
Y.
,
Fan
,
J.
, and
Cen
,
K.
,
2018
, “
Multiscale Investigation of Tube Erosion in Fluidized Bed Based on CFD-DEM Simulation
,”
Chem. Eng. Sci.
,
183
, pp.
60
74
.
24.
Dwivedi
,
K. K.
,
Dutta
,
S.
,
Loha
,
C.
,
Karmakar
,
M. K.
, and
Chatterjee
,
P. K.
,
2021
, “
A Numerical Study on the Wall Erosion Impact and Gas-Particle Hydrodynamics in Circulating Fluidized Bed Riser
,”
Therm. Sci. Eng. Prog.
,
22
, p.
100852
.
25.
Kuruneru
,
S. T. W.
,
Kim
,
J.-S.
,
Too
,
Y. C. S.
, and
Potter
,
D.
,
2021
, “
A Coupled CFD–DEM Approach to Model the In-Trough Mixing in a Multi-stage Solar Particle Receiver
,”
Energy Rep.
,
7
, pp.
5510
5526
.
26.
Shinde
,
S. M.
,
Kawadekar
,
D. M.
,
Patil
,
P. A.
, and
Bhojwani
,
V. K.
,
2021
, “
Analysis of Micro and Nano Particle Erosion by the Numerical Method at Different Pipe Bends and Radius of Curvature
,”
Int. J. Ambient Energy
,
42
(
16
), pp.
1830
1837
.
27.
Obligado
,
M.
,
Baudet
,
C.
,
Gagne
,
Y.
, and
Bourgoin
,
M.
,
2011
, “
Constrained Dynamics of an Inertial Particle in a Turbulent Flow
,”
J. Phys. Conf. Ser.
,
318
(
5
), p.
052016
.
28.
Gorokhovski
,
M.
, and
Zamansky
,
R.
,
2014
, “
Lagrangian Simulation of Large and Small Inertial Particles in a High Reynolds Number Flow: Stochastic Simulation of Subgrid Turbulence/Particle Interactions
,”
Center for Turbulence Research Proceedings of the Summer Program 2014
,
Stanford, CA
,
July 6–Aug. 1
, pp.
37
46
. https://web.stanford.edu/group/ctr/Summer/SP14/04_Particle-laden_flows/05_gorokhovski.pdf
29.
Finnie
,
I.
,
1972
, “
Some Observations on the Erosion of Ductile Metals
,”
Wear
,
19
(
1
), pp.
81
90
.
30.
Finnie
,
I.
,
Levy
,
A.
, and
McFadden
,
D.
,
1979
, “Fundamental Meclianisms of the Erosive Wear of Ductile Metals by Solid Particles,”
Erosion: Prevention and Useful Applications
,
W. F.
Adler
, ed.,
ASTM International
,
Philadelphia, PA
, pp.
36
58
.
31.
COMSOL
,
2020
,
COMSOL Multiphysics, COMSOL Multiphysics User's Guide
, http://www.comsol.com
32.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
,
PTR Prentice Hall
,
Englewood Cliffs, NJ
.
33.
Kant
,
K.
, and
Pitchumani
,
R.
,
2025
, “
Analysis of Abrasion Wear in Particle Storage and Valve Subsystem for Falling Particle Concentrating Solar Power
,”
Tribol. Int.
,
201
, p.
110259
.
You do not currently have access to this content.