Abstract

This study aims to enhance the performance of photovoltaic (PV) solar cells by employing a hybrid cooling technique involving a thermoelectric generator (TEG) and heat sink. Three configuration modules are investigated both experimentally and numerically: module 01: PV only (PV), module 02: PV with TEG (PV-TEG), and module 03: PV with TEG and heat sink (PV-TEG-HS). These modules have been examined numerically under various weather conditions, including solar radiation, wind speed, and ambient temperature. The experimental and numerical results indicate that as solar radiation increases from 500 W/m2 to 1000 W/m2, the temperature of the PV back sheet and PV solar cell also increases. Specifically, for module PV, module PV-TEG, and module PV-TEG-HS, the temperature increases by 57.3%, 56.1%, and 32% respectively. Additionally, the percentage output power (Pout) of the PV increases with rising solar radiation for the three modules, reaching 60.5%, 62.0%, and 87.39% respectively. Moreover, the percentage Pout of the TEG also increases with the increasing solar radiation for the three modules, with percentages of 0%, 299.25%, and 311.96% respectively. Furthermore, increasing wind speed leads to a decrease in the temperatures of the back sheet and solar cell, while simultaneously increasing the Pout of the PV for all three modules. However, the Pout of the TEG in module PV-TEG-HS decreases. The impact of increasing ambient temperatures on module PV-TEG-HS is relatively small compared to the other modules.

References

1.
Imdoukh
,
A.
, and
Zribi
,
M.
,
2023
, “
Maximum Power Point Tracking of a Standalone Photovoltaic System Using Electromagnetic Field Optimization Algorithm
,”
Int. J. Energy Environ. Eng.
,
14
(
4
), pp.
961
971
.
2.
Al-Rbaihat
,
R.
,
Alahmer
,
H.
,
Alahmer
,
A.
,
Altork
,
Y.
,
Al-Manea
,
A.
, and
Awwad
,
K. Y. E.
,
2023
, “
Energy and Exergy Analysis of a Subfreezing Evaporator Environment Ammonia-Water Absorption Refrigeration Cycle: Machine Learning and Parametric Optimization
,”
Int. J. Refrig.
,
154
, pp.
182
204
.
3.
Al-Dahidi
,
S.
,
Alrbai
,
M.
,
Alahmer
,
H.
,
Rinchi
,
B.
, and
Alahmer
,
A.
,
2024
, “
Enhancing Solar Photovoltaic Energy Production Prediction Using Diverse Machine Learning Models Tuned With the Chimp Optimization Algorithm
,”
Sci. Rep.
,
14
(
1
), p.
18583
.
4.
Shagdar
,
E.
,
Shuai
,
Y.
,
Lougou
,
B. G.
,
Mustafa
,
A.
,
Choidorj
,
D.
, and
Tan
,
H.
,
2022
, “
New Integration Mechanism of Solar Energy Into 300 MW Coal-Fired Power Plant: Performance and Techno-Economic Analysis
,”
Energy
,
238
(
Part C
), p.
122005
.
5.
Alahmer
,
H.
,
Alahmer
,
A.
,
Alamayreh
,
M. I.
,
Alrbai
,
M.
,
Al-Rbaihat
,
R.
,
Al-Manea
,
A.
, and
Alkhazaleh
,
R.
,
2023
, “
Optimal Water Addition in Emulsion Diesel Fuel Using Machine Learning and Sea-Horse Optimizer to Minimize Exhaust Pollutants From Diesel Engine
,”
Atmosphere
,
14
(
3
), p.
449
.
6.
Ahmad
,
F. F.
,
Ghenai
,
C.
,
Hamid
,
A. K.
,
Rejeb
,
O.
, and
Bettayeb
,
M.
,
2021
, “
Performance Enhancement and Infra-Red (IR) Thermography of Solar Photovoltaic Panel Using Back Cooling From the Waste Air of Building Centralized Air Conditioning System
,”
Case Stud. Therm. Eng.
,
24
, p.
100840
.
7.
Islam
,
M. K.
,
Hassan
,
N. M. S.
,
Rasul
,
M. G.
,
Emami
,
K.
, and
Chowdhury
,
A. A.
,
2023
, “
Green and Renewable Resources: An Assessment of Sustainable Energy Solution for Far North Queensland, Australia
,”
Int. J. Energy Environ. Eng.
,
14
(
4
), pp.
841
869
.
8.
Papadopoulos
,
A. M.
,
Oxizidis
,
S.
, and
Kyriakis
,
N.
,
2003
, “
Perspectives of Solar Cooling in View of the Developments in the Air-Conditioning Sector
,”
Renew. Sustain. Energy Rev.
,
7
(
5
), pp.
419
438
.
9.
Gupta
,
A.
,
Agrawal
,
S.
, and
Pal
,
Y.
,
2020
, “
Performance Evaluation of Hybrid Photovoltaic Thermal Thermoelectric Collector Using Grasshopper Optimization Algorithm With Simulated Annealing
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061004
.
10.
Al-Amayreh
,
M. I.
, and
Alahmer
,
A.
,
2022
, “
On Improving the Efficiency of Hybrid Solar Lighting and Thermal System Using Dual-Axis Solar Tracking System
,”
Energy Rep.
,
8
(
Suppl. 1
), pp.
841
847
.
11.
Alahmer
,
A.
, and
Alsaqoor
,
S.
,
2019
, “
Energy Efficient of Using Chilled Water System for Sustainable Health Care Facility Operating by Solar Photovoltaic Technology
,”
Energy Proc.
,
156
, pp.
65
71
.
12.
Al-Manea
,
A.
,
Al-Rbaihat
,
R.
,
Kadhim
,
H. T.
,
Alahmer
,
A.
,
Yusaf
,
T.
, and
Egab
,
K.
,
2022
, “
Experimental and Numerical Study to Develop TRNSYS Model for an Active Flat Plate Solar Collector With an Internally Serpentine Tube Receiver
,”
Int. J. Thermofluids
,
15
, p.
100189
.
13.
Mgbemene
,
C. A.
,
Duffy
,
J.
,
Sun
,
H.
, and
Onyegegbu
,
S. O.
,
2010
, “
Electricity Generation From a Compound Parabolic Concentrator Coupled to a Thermoelectric Module
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
031015
.
14.
Rabie
,
R.
,
Emam
,
M.
,
Elwardany
,
A.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2021
, “
Performance Evaluation of Concentrator Photovoltaic Systems Integrated With Combined Passive Cooling Techniques
,”
Sol. Energy
,
228
, pp.
447
463
.
15.
Badran
,
O.
,
Alahmer
,
A.
,
Hamad
,
F. A.
,
El-Tous
,
Y.
,
Al-Marahle
,
G.
, and
Al-Ahmadi
,
H. M. A.
,
2023
, “
Enhancement of Solar Distiller Performance by Photovoltaic Heating System
,”
Int. J. Thermofluids
,
18
, p.
100315
.
16.
Ghoniem
,
R. M.
,
Alahmer
,
A.
,
Rezk
,
H.
, and
As’ad
,
S.
,
2023
, “
Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System
,”
Sustainability
,
15
(
15
), p.
12026
.
17.
George
,
M.
,
Pandey
,
A. K.
,
Abd Rahim
,
N.
,
Tyagi
,
V. V.
,
Shahabuddin
,
S.
, and
Saidur
,
R.
,
2019
, “
Concentrated Photovoltaic Thermal Systems: A Component-by-Component View on the Developments in the Design, Heat Transfer Medium and Applications
,”
Energy Convers. Manage.
,
186
, pp.
15
41
.
18.
Alahmer
,
A.
,
Ajib
,
S.
, and
Wang
,
X.
,
2019
, “
Comprehensive Strategies for Performance Improvement of Adsorption Air Conditioning Systems: A Review
,”
Renew. Sustain. Energy Rev.
,
99
, pp.
138
158
.
19.
Tiwari
,
A. K.
,
Sontake
,
V. C.
, and
Kalamkar
,
V. R.
,
2020
, “
Enhancing the Performance of Solar Photovoltaic Water Pumping System by Water Cooling Over and Below the Photovoltaic Array
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021005
.
20.
Alsaqoor
,
S.
,
Alqatamin
,
A.
,
Alahmer
,
A.
,
Nan
,
Z.
,
Al-Husban
,
Y.
, and
Jouhara
,
H.
,
2023
, “
The Impact of Phase Change Material on Photovoltaic Thermal (PVT) Systems: A Numerical Study
,”
Int. J. Thermofluids
,
18
, p.
100365
.
21.
Abdollahi
,
N.
, and
Rahimi
,
M.
,
2020
, “
Using a Novel Phase Change Material-Based Cooling Tower for a Photovoltaic Module Cooling
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021003
.
22.
El Mliles
,
M.
,
El Kouari
,
Y.
, and
Hajjaji
,
A.
,
2019
, “
The Effect of the Temperature Difference on the Performance of Photovoltaic-Thermoelectric Hybrid Systems
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051010
.
23.
Gomaa
,
M. R.
,
Al-Dhaifallah
,
M.
,
Alahmer
,
A.
, and
Rezk
,
H.
,
2020
, “
Design, Modeling, and Experimental Investigation of Active Water Cooling Concentrating Photovoltaic System
,”
Sustainability
,
12
(
13
), p.
5392
.
24.
Ali
,
F. H.
,
Al-Amir
,
Q. R.
,
Hamzah
,
H. K.
, and
Alahmer
,
A.
,
2024
, “
Unveiling the Potential of Solar Cooling Technologies for Sustainable Energy and Environmental Solutions
,”
Energy Convers. Manage.
,
321
, p.
119034
.
25.
Köysal
,
Y.
,
Özdemir
,
A. E.
, and
Atalay
,
T.
,
2018
, “
Experimental and Modeling Study on Solar System Using Linear Fresnel Lens and Thermoelectric Module
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061003
.
26.
Amer
,
A.
,
Attar
,
H.
,
As’ad
,
S.
,
Alsaqoor
,
S.
,
Colak
,
I.
,
Alahmer
,
A.
,
Alali
,
M.
,
Borowski
,
G.
,
Hmada
,
M.
, and
Solyman
,
A.
,
2023
, “
Floating Photovoltaics: Assessing the Potential, Advantages, and Challenges of Harnessing Solar Energy on Water Bodies
,”
J. Ecol. Eng.
,
24
(
10
), pp.
324
339
.
27.
Soliman
,
A. M. A.
,
Hassan
,
H.
, and
Ookawara
,
S.
,
2019
, “
An Experimental Study of the Performance of the Solar Cell With Heat Sink Cooling System
,”
Energy Proc.
,
162
, pp.
127
135
.
28.
Arifin
,
Z.
,
Tjahjana
,
D. D. D. P.
,
Hadi
,
S.
,
Rachmanto
,
R. A.
,
Setyohandoko
,
G.
, and
Sutanto
,
B.
,
2020
, “
Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks
,”
Int. J. Photoenergy
,
2020
(
1
), p.
1574274
.
29.
Haidar
,
Z. A.
,
Orfi
,
J.
, and
Kaneesamkandi
,
Z.
,
2021
, “
Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches
,”
Energies
,
14
(
1
), p.
145
.
30.
Praveenkumar
,
S.
,
Agyekum
,
E. B.
,
Alwan
,
N. T.
,
Qasim
,
M. A.
,
Velkin
,
V. I.
, and
Shcheklein
,
S. E.
,
2022
, “
Experimental Assessment of Thermoelectric Cooling on the Efficiency of PV Module
,”
Int. J. Renew. Energy Res.
,
12
(
3
), pp.
1670
1681
.
31.
Mahamudul
,
H.
,
Rahman
,
M. M.
,
Metselaar
,
H. S. C.
,
Mekhilef
,
S.
,
Shezan
,
S. A.
,
Sohel
,
R.
,
Karim
,
A.
,
Bin
,
S.
, and
Badiuzaman
,
W. N. I.
,
2016
, “
Temperature Regulation of Photovoltaic Module Using Phase Change Material: A Numerical Analysis and Experimental Investigation
,”
Int. J. Photoenergy
,
2016
(
1
), p.
5917028
.
32.
Murtadha
,
T. K.
,
Dil Hussein
,
A. A.
,
Alalwany
,
A. A. H.
,
Alrwashdeh
,
S. S.
, and
Al-Falahat
,
A. M.
,
2022
, “
Improving the Cooling Performance of Photovoltaic Panels by Using Two Passes Circulation of Titanium Dioxide Nanofluid
,”
Case Stud. Therm. Eng.
,
36
, p.
102191
.
33.
Radwan
,
A.
, and
Ahmed
,
M.
,
2018
, “
Thermal Management of Concentrator Photovoltaic Systems Using Microchannel Heat Sink With Nanofluids
,”
Sol. Energy
,
171
, pp.
229
246
.
34.
Tan
,
L.
,
Date
,
A.
,
Fernandes
,
G.
,
Singh
,
B.
, and
Ganguly
,
S.
,
2017
, “
Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage
,”
Energy Proc.
,
110
, pp.
83
88
.
35.
Bahaidarah
,
H. M. S.
,
Baloch
,
A. A. B.
, and
Gandhidasan
,
P.
,
2016
, “
Uniform Cooling of Photovoltaic Panels: A Review
,”
Renew. Sustain. Energy Rev.
,
57
, pp.
1520
1544
.
36.
Mouaici
,
K.
,
Fersadou
,
B.
,
Arslan
,
K.
,
Kahalerras
,
H.
, and
Traiche
,
M.
,
2025
, “
Technological Limit of Solar Concentration Technique Applied to Hybrid Photovoltaic-Thermal Solar Collector Equipped With Thermoelectric Generator Incorporating Ternary Nanofluid
,”
ASME J. Sol. Energy Eng.
,
147
(
2
), p.
021004
.
37.
Najafi
,
H.
, and
Woodbury
,
K. A.
,
2013
, “
Modeling and Analysis of a Combined Photovoltaic-Thermoelectric Power Generation System
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031013
.
38.
Amber
,
K. P.
,
Akram
,
W.
,
Bashir
,
M. A.
,
Khan
,
M. S.
, and
Kousar
,
A.
,
2021
, “
Experimental Performance Analysis of Two Different Passive Cooling Techniques for Solar Photovoltaic Installations
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2355
2366
.
39.
Parkunam
,
N.
,
Pandiyan
,
L.
,
Navaneethakrishnan
,
G.
,
Arul
,
S.
, and
Vijayan
,
V.
,
2020
, “
Experimental Analysis on Passive Cooling of Flat Photovoltaic Panel With Heat Sink and Wick Structure
,”
Energy Sources Part A: Recov. Util. Environ. Eff.
,
42
(
6
), pp.
653
663
.
40.
Hasan
,
A.
,
Sarwar
,
J.
,
Alnoman
,
H.
, and
Abdelbaqi
,
S.
,
2017
, “
Yearly Energy Performance of a Photovoltaic-Phase Change Material (PV-PCM) System in Hot Climate
,”
Sol. Energy
,
146
, pp.
417
429
.
41.
Tang
,
X.
,
Quan
,
Z.
, and
Zhao
,
Y.
,
2010
, “
Experimental Investigation of Solar Panel Cooling by a Novel Micro Heat Pipe Array
,”
Energy Power Eng.
,
2
(
3
), pp.
171
174
.
42.
Bahaidarah
,
H.
,
Subhan
,
A.
,
Gandhidasan
,
P.
, and
Rehman
,
S.
,
2013
, “
Performance Evaluation of a PV (Photovoltaic) Module by Back Surface Water Cooling for Hot Climatic Conditions
,”
Energy
,
59
, pp.
445
453
.
43.
Nasrin
,
R.
,
Rahim
,
N. A.
,
Fayaz
,
H.
, and
Hasanuzzaman
,
M.
,
2018
, “
Water/MWCNT Nanofluid Based Cooling System of PVT: Experimental and Numerical Research
,”
Renew. Energy
,
121
, pp.
286
300
.
44.
Sheikholeslami
,
M.
, and
Khalili
,
Z.
,
2024
, “
Investigation of Nanofluid Cooling Influence on Energy Performance of Photovoltaic-Thermoelectric Module
,”
J. Therm. Anal. Calorim.
,
149
(
1
), pp.
495
503
.
45.
Bulat
,
S.
,
Büyükbicakci
,
E.
, and
Erkovan
,
M.
,
2024
, “
Efficiency Enhancement in Photovoltaic–Thermoelectric Hybrid Systems Through Cooling Strategies
,”
Energies
,
17
(
2
), p.
430
.
46.
Wu
,
Z.
,
Xie
,
G.
,
Gao
,
F.
,
Chen
,
W.
,
Zheng
,
Q.
, and
Liu
,
Y.
,
2024
, “
Experimental Study of a Self-Cooling Concentrated Photovoltaic (CPV) System Using Thermoelectric Modules
,”
Energy Convers. Manage.
,
299
, p.
117858
.
47.
Singh
,
B. S. B.
,
2023
, “Thermoelectric Generators: Design, Operation, and Applications,”
New Materials and Devices for Thermoelectric Power Generation
,
B. I. A.
Ismail
, ed.,
IntechOpen
,
London, UK
, p.
321
.
48.
Jabbar
,
H. A.
,
Alwan
,
K. J.
,
Hachim
,
D. M.
,
Al-Manea
,
A.
,
Al-Rbaihat
,
R.
, and
Alahmer
,
A.
,
2024
, “
Comparative Assessment of Thermal Oils and Water as Working Fluids in Parabolic Trough Collectors for Enhanced Solar Power Generation
,”
Eng. Res. Expr.
,
6
(
3
), p.
35514
.
49.
Fabbri
,
G.
, and
Greppi
,
M.
,
2021
, “
Numerical Modeling of a New Integrated PV-TE Cooling System and Support
,”
Results Eng.
,
11
, p.
100240
.
50.
Slimani
,
M. E. A.
,
Amirat
,
M.
,
Kurucz
,
I.
,
Bahria
,
S.
,
Hamidat
,
A.
, and
Chaouch
,
W. B.
,
2017
, “
A Detailed Thermal-Electrical Model of Three Photovoltaic/Thermal (PV/T) Hybrid Air Collectors and Photovoltaic (PV) Module: Comparative Study Under Algiers Climatic Conditions
,”
Energy Convers. Manage.
,
133
, pp.
458
476
.
You do not currently have access to this content.