A multipassage internal cooling test model with a 180 deg U-bend at the hub was investigated. The flow is radially inward at the inlet passage while it is radially outward at the trailing edge passage. The aspect ratio (AR) of the inlet passage is 2:1 (AR = 2) while the trailing edge passage is wedge-shaped with side wall slot ejections. The squared ribs with P/e = 8, e/Dh = 0.1, α = 45 deg, were configured on both leading surface (LE) and trailing surface (TR) along the inlet passage, and also at the inner half of the trailing edge passage. Three rows of cylinder-shaped pin fins with a diameter of 3 mm were placed at both LE and TR at the outer half of the trailing edge passage. For without turning vane case, heat transfer on LE at hub turn region is increased by rotation while it is decreased on the TR. The presence of turning vane reduces the effect of rotation on hub turn portion. The combination of ribs, pin-fin array, and mass loss of cooling air through side wall slot ejection results in the heat transfer coefficient gradually decreased along the trailing edge passage. Correlation between regional heat transfer coefficients and rotation numbers is presented for with and without turning vane cases, and with channel orientation angle β at 90 deg and 45 deg.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed., CRC Press, Boca Raton, FL.
2.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
.
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kooper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Passage With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.
4.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
912
920
.
5.
Taslim
,
M. E.
,
Rahman
,
A.
, and
Spring
,
S. D.
,
1991
, “
An Experimental Investigation of Heat Transfer Coefficients in a Spanwise Rotating Channel With Two Opposite Rib-Roughened Walls
,”
ASME J. Turbomach.
,
113
(
1
), pp.
75
82
.
6.
Dutta
,
S.
,
Andrews
,
M. J.
, and
Han
,
J. C.
,
1996
, “
Prediction of Turbulent Heat Transfer in Rotating Smooth Square Ducts
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2505
2514
.
7.
Lei
,
J.
,
Li
,
S. J.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2013
, “
Heat Transfer in Rotating Multi-Pass Rectangular Ribbed Channel With and Without a Turing Vane
,”
ASME J. Heat Transfer
,
135
(4), p.
041903
.
8.
Lei
,
J.
,
Li
,
S. J.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2014
, “
Effect of a Turning Vane on Heat Transfer in Rotating Multipass Rectangular Smooth Channel
,”
J. Thermophys. Heat Transfer
,
28
(
3
), pp.
417
427
.
9.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2014
, “
Heat Transfer Measurement in Rotating Blade-Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.
10.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Zhang
,
Y.
,
1995
, “
Effect of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1151
1159
.
11.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(
4
), pp.
738
744
.
12.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.
13.
Qiu
,
L.
,
Deng
,
H.
, and
Tao
,
Z.
,
2013
, “
Effect of Channel Orientation in a Rotating Smooth Wedge-Shaped Cooling Channel With Lateral Ejection
,”
ASME
Paper No. GT2013-94758.
14.
Li
,
Y.
,
Deng
,
H.
,
Xu
,
G.
,
Lu
,
Q.
, and
Tian
,
S.
,
2014
, “
Effect Of Channel Orientation on Heat Transfer in Rotating Smooth Square U-Duct at High Rotation Number
,”
ASME
Paper No. GT2014-25188.
15.
Srinivasan
,
B.
,
Dhamarla
,
A.
,
Jayamurugan
,
C.
, and
Rajan
,
A. B.
,
2014
, “
Numerical Studies on Effect of Channel Orientation in a Rotating Smooth Wedge-Shaped Cooling Channel
,”
ASME
Paper No. GT2014-26560.
16.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
91
98
.
17.
Schabacker
,
J.
,
Bolcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 deg Bend
,”
ASME
Paper No. 98-GT-544.
18.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4809
4822
.
19.
Saha
,
K.
, and
Acharya
,
S.
,
2013
, “
Bend Geometries in Internal Cooling Channels for Improved Thermal Performance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031028
.
20.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2009
, “
Analysis of Turbulent Flow in 180 deg Turning Ducts With and Without Guide Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021011
.
21.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
Wolfersdorf
,
J.
, and
Neumann
,
N. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
.
22.
Chu
,
H. C.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2013
, “
Numerical Simulation of Flow and Heat Transfer in Rotating Cooling Passage With Turning Vane in Hub Region
,”
ASME
Paper No. GT2013-94289.
23.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1995
, “
Experimental Study of the Effects of Bleed Holes on Heat Transfer and Pressure Drop in Trapezoidal Passages With Tapered Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
281
289
.
24.
Hwang
,
J. J.
, and
Lu
,
C. C.
,
2001
, “
Lateral-Flow Effect on Endwall Heat Transfer and Pressure Drop in a Pin Fin Trapezoidal Duct With Various Pin Shapes
,”
ASME J. Turbomach.
,
123
(
1
), pp.
133
139
.
25.
Rallabandi
,
A.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.
26.
Krueckels
,
J.
,
Naik
,
S.
, and
Lerch
,
A.
,
2014
, “
Heat Transfer in a Vane Trailing Edge Passage With Conical Pins and Pin-Turbulator Integrated Configurations
,”
ASME
Paper No. GT2014-25522.
27.
Liu
,
Y. H.
,
Huh
,
M.
, and
Han
,
J. C.
,
2012
, “
High Rotation Number Effect on Heat Transfer in a Trailing Edge Channel With Tapered Ribs
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
182
192
.
28.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
378
387
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.https://www.researchgate.net/publication/243766830_Describing_Uncertainties_in_Single-Sample_Experiments
30.
Coletti
,
F.
, and
Arts
,
T.
,
2011
, “
Aerodynamic Investigation of a Rotating Rib-Roughened Channel by Time-Resolved Particle Image Velocimetry
,”
J. Power Energy
,
255
(
7
), pp.
975
984
.
31.
Coletti
,
F.
,
Maurer
,
T.
, and
Arts
,
T.
,
2012
, “
Flow Field Investigation in Rotating Rib-Roughened Channel by Means of Particle Image Velocimetry
,”
Exp. Fluids
,
52
(
4
), pp.
1043
1061
.
You do not currently have access to this content.