Abstract

The addition of a supplementary high-efficiency cycle integrated with an existing steam power cycle may increase energy efficiency and net generation. In this article, part-load performance and operation of a modular biomass boiler with an existing industrial Rankine steam heat and power cycle and supplementary supercritical CO2 (sCO2) Brayton cycle are analyzed. The aim is to leverage the high efficiency of the sCO2 cycle by retrofitting sCO2 heaters in the existing biomass boiler, increasing net power output and thermal efficiency. With nominal load performance previously investigated, understanding part-load performance and operation is vital to determining cycle feasibility. A quasi-steady-state one-dimensional thermofluid network model was used to simulate the integrated cycle performance for loads ranging from 100% to 60%. The model solves the mass, energy, momentum, and species balance equations, capturing detailed component characteristics. Two control methodologies are explored for the sCO2 Brayton cycle, namely inventory control and inventory control combined with throttling valve control. Inventory control is selected as the better-performing control strategy for load following, maintaining high thermal efficiency across partial loads. At 60% load, the sCO2 compressor operates near the pseudo-critical point, leading to a sharp decrease in sCO2 cycle capacity, which requires careful management of inventory control. Two sCO2 heater configurations are investigated, namely a single convective-dominant heater, and a dual heater configuration with a radiative and a convective heater. The single heater configuration is preferred to minimize adverse impacts on the Rankine cycle superheaters.

References

1.
IEA
,
2021
, “
Net Zero by 2050 - A Roadmap for the Global Energy Sector
.” https://www.iea.org/reports/net-zero-by-2050.
2.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles
, 1st ed.,
Woodhead Publishing, Elsevier
,
Duxford, UK
.
3.
Zhang
,
H.
,
Shao
,
S.
,
Zhao
,
H.
, and
Feng
,
Z.
,
2014
, “
Thermodynamic Analysis of a SCO2 Part-Flow Cycle Combined With an Organic Rankine Cycle With Liquefied Natural Gas as Heat Sink
,”
Volume 3B: Oil and Gas Applications; Organic Rankine Cycle Power Systems; Supercritical CO2 Power Cycles; Wind Energy
,
Dusseldorf, Germany
,
June 16
, pp.
1
8
.
4.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Scammell
,
W. O.
,
2016
, “
Thermo-Economic Analysis of Four SCO2 Waste Heat Recovery Power Systems
,”
The Fifth Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
,
Mar. 28–31
.
5.
Akbari
,
A. D.
, and
Mahmoudi
,
S. M. S.
,
2014
, “
Thermoeconomic Analysis & Optimization of the Combined Supercritical CO2 (Carbon Dioxide) Recompression Brayton/Organic Rankine Cycle
,”
Energy
,
78
(
1
), pp.
501
512
.
6.
Song
,
J.
,
Li
,
X.
,
Ren
,
X.
, and
Gu
,
C.
,
2018
, “
Performance Analysis and Parametric Optimization of Supercritical Carbon Dioxide (S-CO2) Cycle With Bottoming Organic Rankine Cycle (ORC)
,”
Energy
,
143
(
1
), pp.
406
416
.
7.
Mutlu
,
B.
,
Baker
,
D.
, and
Kazanç
,
F.
,
2021
, “
Development and Analysis of the Novel Hybridization of a Single-Flash Geothermal Power Plant With Biomass Driven sCO2-Steam Rankine Combined Cycle
,”
Entropy
,
23
(
6
), p.
766
.
8.
Zignani
,
T.
,
Binotti
,
M.
,
Astolfi
,
M.
, and
Alfani
,
D.
,
2020
, “
Feasibility Study on the Application of Supercritical Carbon Dioxide Cycles to Biomass-Fired Power Plants
,”
M.Sc. dissertation
,
Politecnico di Milano
,
Milan, Italy
. https://www.politesi.polimi.it/bitstream/10589/167404/3/2020_10_Zignani.pdf.
9.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
,
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,
Massachusetts Institute of Technology
,
Boston, MA
.
10.
Wang
,
X.
,
Wang
,
R.
,
Bian
,
X.
,
Cai
,
J.
,
Tian
,
H.
,
Shu
,
G.
,
Li
,
X.
, and
Qin
,
Z.
,
2021
, “
Review of Dynamic Performance and Control Strategy of Supercritical CO2 Brayton Cycle
,”
Energy AI
,
5
(
1
), p.
100078
.
11.
Heifetz
,
A.
, and
Vilim
,
R.
,
2015
, “
Turbine Bypass, Mass Inventory, and Mixed-Mode Generator Power Control of S-CO2 Recompression Cycle
,”
Nucl. Technol.
,
189
(
3
), pp.
268
277
.
12.
Wang
,
R.
,
Wang
,
X.
,
Shu
,
G.
,
Tian
,
H.
,
Cai
,
J.
,
Bian
,
X.
,
Li
,
X.
,
Qin
,
Z.
, and
Shi
,
L.
,
2022
, “
Comparison of Different Load-Following Control Strategies of a SCO2 Brayton Cycle Under Full Load Range
,”
Energy
,
246
(
1
), p.
123378
.
13.
Fan
,
G.
,
Li
,
H.
,
Du
,
Y.
,
Chen
,
K.
,
Zheng
,
S.
, and
Dai
,
Y.
,
2020
, “
Preliminary Design and Part-Load Performance Analysis of a Recompression Supercritical Carbon Dioxide Cycle Combined With a Transcritical Carbon Dioxide Cycle
,”
Energy Convers. Manage.
,
212
(
1
), p.
112758
.
14.
Fan
,
G.
, and
Dai
,
Y.
,
2021
, “
Thermo-Economic Optimization and Part-Load Analysis of the Combined Supercritical CO2 and Kalina Cycle
,”
Energy Convers. Manage.
,
245
(
1
), p.
114572
.
15.
Colombo
,
F.
,
2022
,
Preliminary Design and Part Load Analysis of Supercritical Carbon Dioxide Power Cycles for Gas Turbine Bottoming Applications
,
Politecnico Milano
,
Milan, Italy
.
16.
Haffejee
,
R. A.
,
Rousseau
,
P.
, and
Laubscher
,
R.
,
2024
, “
Integrated Performance of a Modular Biomass Boiler With a Combined Heat and Power Industrial Rankine Cycle and Supplementary SCO2 Brayton Cycle
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
9
), p.
091001
.
17.
Stultz
,
S. C.
, and
Kitto
,
J. B.
,
2005
,
Steam: Its Generation and Use
, 41st. ed.,
Babcock & Wilcox
,
Akron, OH
.
18.
Laubscher
,
R.
, and
De Villiers
,
E.
,
2021
, “
Integrated Mathematical Modelling of a 105 t/h Biomass Fired Industrial Watertube Boiler System With Varying Fuel Moisture Content
,”
Energy
,
228
(
1
), p.
120537
.
19.
Rousseau
,
P.
,
Laubscher
,
R.
, and
Rawlins
,
B. T.
,
2023
, “
Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers
,”
Energies
,
16
(
4
), p.
1741
.
20.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
21.
Blokh
,
A. G.
, and
Viskanta
,
R.
,
1988
,
Heat Transfer in Steam Boiler Furnaces
,
Hemisphere Publishing Corporation
,
London, UK
.
22.
Brummel
,
H.-G.
,
2010
, “K4 – Thermal Radiation of Gas–Solids–Dispersions,”
VDI Heat Atlas
,
P.
Stephan
,
S.
Kabelac
,
M.
Kind
,
H.
Martin
,
D.
Mewes
, and
K.
Schaber
, eds.,
Springer-Verlag
,
Berlin, Germany
, pp.
989
1000
.
23.
Lin
,
Z.
,
1991
, “Thermohydraulic Design of Fossil-Fuel-Fired Boiler Components,”
Boilers, Evaporators, and Condensers
,
S.
Kakac
, ed.,
John Wiley & Sons
,
Nashville, TN
, pp.
363
469
.
24.
Zhang
,
Y.
,
Li
,
Q.
, and
Zhou
,
H.
,
2016
,
Theory and Calculation of Heat Transfer in Furnaces
,
Elsevier
,
New York
.
25.
Gnielinski
,
V.
,
2016
, “G7 Heat Transfer in Cross-flow Around Single Rows of Tubes and Through Tube Bundles,”
VDI Heat Atlas
,
P.
Stephan
,
S.
Kabelac
,
M.
Kind
,
H.
Martin
,
D.
Mewes
, and
K.
Schaber
, eds.,
Springer-Verlag
,
Berlin
, pp.
756
760
.
26.
Cengel
,
Y. A.
,
1997
,
Heat Transfer: A Practical Approach
,
McGraw-Hill
,
New York
.
27.
Zhu
,
Y.
,
Liang
,
S.
,
Guo
,
C.
,
Guo
,
Y.
,
Li
,
Z.
,
Gong
,
X.
, and
Jiang
,
Y.
,
2023
, “
Experimental Study on a Supercritical CO2 Centrifugal Compressor Used in a MWe Scale Power Cycle
,”
Appl. Sci.
,
13
(
1
), pp.
14
17
.
You do not currently have access to this content.