Five-degree-of-freedom (5-DOF) characterization of the stability of a gas-lubricated conical bearing of the spiral-groove design is presented for bearing numbers up to 500. Critical points in stability analysis are identified in impedance contour plots separately for axial, cylindrical, and conical modes. The stability thresholds with respect to each mode are graphed as functions of the bearing number. For axial and cylindrical modes, the threshold parameter is the rotor mass. For the conical mode, the threshold parameter is an equivalent mass that is dependent on both transverse and polar radii of gyration of the rotor. An application example illustrates a rational procedure to specify nominal bearing clearance and its allowable tolerance range.

1.
Whipple
,
R. T. P.
, 1949, “
Herringbone Pattern Thrust Bearings
,”
Atomic Energy Research Establishment (England)
, Technical Memorandum 29.
2.
Denhard
,
W. G.
, and
Pan
,
C. H. T.
, 1968, “
Application of Gas-Lubricated Bearings to Instruments
,”
ASME J. Lubr. Technol.
0022-2305,
90
, pp.
731
740
.
3.
Leuthold
,
H.
,
Pan
,
C. H.
,
Jennings
,
D. J.
,
Nagarathnam
,
L.
,
Khan
,
R. U.
,
Clark
,
W. R.
, and
Heine
,
G.
, 1999, “
Fluid Retention Principle for Hydrodynamic Bearings
,” U. S. Patent No. 5,993,066.
4.
Jang
,
G. H.
,
Kim
,
K. S.
,
Lee
,
H. S.
, and
Kim
,
C. S.
, 2004, “
Analysis of a Hydrodynamic Bearing of a HDD Spindle Motor at Elevated Temperature
,”
ASME J. Tribol.
0742-4787
126
, pp.
353
359
.
5.
Keating
,
W. H.
, and
Pan
,
C. H. T.
, 1968, “
Design Studies of an Opposed-Hemisphere Gyro Spin-Axis Gas Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
90
, pp.
753
760
.
6.
Pan
,
C. H. T.
, and
San Andrés
,
L.
, 2005, “
The Narrow Groove Analysis Revisited
,”
Proc. of World Tribology Congress III
, Sept. 12–16, Washington, DC, ASME Paper No. WTC2005–63803.
7.
Vohr
,
J. H.
, and
Pan
,
C. H. T.
, 1968, “
Gas-Lubricated Spin-Axis Bearings for Gyroscopes
,” Technical Report MTI-68TR29, prepared for Office of Naval Research, under Contract N00014–67-C-0530 NR 062–370/2–21–27.
8.
Pan
,
C. H. T.
, 1965. “
Spectral Analysis of Gas Bearing Systems for Stability Studies
,”
Developments in Mechanics
,
Proc. of the Ninth Midwestern Mechanics Conference
,
T. C.
Huang
, and
M. W.
Johnson
, Jr.
, eds.,
Wiley
,
New York
, Vol.
3
, Part 2: Dynamics ad Fluid Mechanics, pp.
431
448
.
9.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
, 1965, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
547
558
.
10.
Malanoski
,
S. B.
, 1967, “
Experiments on an Ultrastable Journal Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
89
, pp.
433
438
.
11.
Cunningham
,
R. E.
,
Fleming
,
D. P.
, and
Anderson
,
W. J.
, 1969, “
Experimental Stability Studies of the Herringbone-Grooved Gas-Lubricated Journal Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
91
, pp.
52
59
.
12.
Pan
,
C. H. T.
, 1980, “
Rotor Bearing Dynamics
,”
Tribology—Friction, Lubrication, and Wear
,
Szeri
,
A. Z.
, eds.,
Hemisphere
,
New York
, Chap. 7.
13.
Pan
,
C. H. T.
, 1967, “
On Asymptotic Analysis of Gaseous Squeeze-Film Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
89
, pp.
245
253
.
14.
Diprima
,
R. C.
, 1968, “
Asymptotic Methods for an Infinitely Long Slider Squeeze-Film Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
90
, pp.
173
183
.
You do not currently have access to this content.