A new foil gas bearing with spring bumps was constructed, analyzed, and tested. The new foil gas bearing uses a series of compression springs as compliant underlying structures instead of corrugated bump foils. Experiments on the stiffness of the spring bumps show an excellent agreement with an analytical model developed for the spring bumps. Load capacity, structural stiffness, and equivalent viscous damping (and structural loss factor) were measured to demonstrate the feasibility of the new foil bearing. Orbit and coast-down simulations using the calculated stiffness and measured structural loss factor indicate that the damping of underlying structure can suppress the maximum peak at the critical speed very effectively but not the onset of hydrodynamic rotor-bearing instability. However, the damping plays an important role in suppressing the subsynchronous vibrations under limit cycles. The observation is believed to be true with any air foil bearings with different types of elastic foundations.

1.
Agrawal
,
G. L.
, 1997, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
2.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
, pp.
352
368
.
3.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
0742-4787,
116
, pp.
287
295
.
4.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbo-Machinery Applications
,”
STLE Tribol. Trans.
1040-2004,
43
(
4
), pp.
795
801
.
5.
Dykas
,
B.
, and
Howard
,
S. A.
, 2004, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
47
, pp.
508
516
.
6.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
, 2002, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
45
(
4
), pp.
485
490
.
7.
Ku
,
C.-P.
, and
Heshmat
,
H.
, 1992, “
Compliant Foil Bearings Structural Stiffness Analysis—Part I: Theoretical Model—Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
0742-4787,
114
(
2
), pp.
394
400
.
8.
Peng
,
J. P.
, and
Carpino
,
M.
, 1993, “
Coulomb Friction Damping Effects in Elastically Supported Gas Foil Bearings
,”
STLE Tribol. Trans.
1040-2004,
37
(
1
), pp.
91
98
.
9.
Peng
,
J. P.
, and
Carpino
,
M.
, 1993, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
115
(
1
), pp.
20
27
.
10.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2005, “
Analysis of Gas Foil Bearings With Piece-wise Linear Elastic Supports
,” ASME Paper No. WTC 2005-63397.
11.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2005, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,” ASME Paper No. GT 2005-68486.
12.
Rubio
,
D.
, and
San Andrés
,
L.
, 2004, “
Bump Type Foil Bearing Structural Stiffness: Experiments and Prediction
,” ASME Paper GT2004-53611.
13.
Rubio
,
D.
, and
San Andrés
,
L.
, 2005, “
Structural Stiffness, Dry-Friction Coefficient and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,” ASME Paper No. GT 2005-68384.
14.
Ku
,
C.-P.
, and
Heshmat
,
H.
, 1994, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearing: Parametric Studies
,”
STLE Tribol. Trans.
1040-2004,
37
(
3
), pp.
455
462
.
15.
Salehi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J. F.
, 2003, “
On the Frictional Damping Characteristics of Compliant Bump Foils
,”
ASME J. Tribol.
0742-4787,
125
, pp.
804
813
.
16.
Peng
,
Z.-C.
, and
Khonsary
,
M. M.
, 2006, “
A Thermodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
534
541
.
17.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2006, “
Computational Analysis of Gas Foil Bearings Integrating 1D and 2D Finite Element Models for Top Foil
,” Technical Report No. TRC-B&C-1-06, Texas A&M Univ., College Station.
18.
Carpino
,
M.
, and
Talmage
,
G.
, 2003, “
A Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
STLE Tribol. Trans.
1040-2004,
46
, pp.
560
565
.
19.
Heshmat
,
H.
,
Walton
,
J. F.
, and
Tomaszewski
,
M. J.
, 2005, “
Demonstration of a Turbojet Engine Using an Air Foil Bearing
,” ASME Paper No. GT 2005-68404.
20.
Heshmat
,
H.
,
Walton
,
J. F.
,
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Oil Free Turbocharger Demonstration Paves Way to Gas Turbine Applications
,” ASME Paper No. 2000-GT-0620.
21.
Heshmat
,
H.
, 2000, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
0742-4787,
122
, pp.
192
198
.
22.
Kim
,
D.
, 2007, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
0742-4787, to be published.
23.
Crandall
,
S. H.
,
Dahl
,
N. C.
, and
Lardner
,
T. J.
, 1978,
An Introduction to the Mechanics of Solids
, 2nd ed.,
McGraw-Hill
, New York, p.
108
.
24.
Chapra
,
S. C.
, and
Canale
,
R. P.
, 1989,
Numerical Methods for Engineers
,
McGraw-Hill
, New York, pp.
631
634
.
25.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
, 1998,
Theory of Vibration With Applications
, 5th ed.
Prentice Hall
, Englewood Cliffs, NJ, pp.
67
68
.
You do not currently have access to this content.