Abstract

Squeeze film damper (SFD) designs typically implement supply grooves to ensure adequate lubricant flow into the film lands. Oil seal rings, of land film clearance c, also incorporate short and shallow grooves (length30c,depth15c) to reduce cross-coupled stiffnesses, thus promoting dynamic stability without a penalty in increased leakage. However, extensive experimental results in the archival literature demonstrate that grooves do not reduce the force coefficients as much as theory predicts. A common assumption is that deep grooves do not influence a damper or oil seal ring forced response. However, unexpected large added mass coefficients, not adequately predicted, appear to be common in many tested SFD and oil seal configurations. In the case of oil seals, experiments demonstrate that circumferential grooves do reduce cross-coupled stiffnesses but to a lesser extent than predictions would otherwise indicate. A linear fluid inertia bulk-flow model for analysis of the forced response of SFDs and oil seal configurations with multiple grooves is advanced. A perturbation analysis for small amplitude journal motions about a centered position yields zeroth and first-order flow equations at each flow region (lands and grooves). At a groove region, a groove effective depth dη, differing from its actual physical value, is derived from qualitative observations of the laminar flow pattern through annular cavities. The boundary conditions at the inlet and exit planes depend on the actual seal or SFD configuration. Integration of the resulting first-order pressure fields on the journal surface yields the force coefficients (stiffness, damping, and inertia). Current model predictions are in excellent agreement with published test force coefficients for a grooved SFD and a grooved oil seal. The results confirm that large added mass coefficients arise from the flow interactions between the feed/discharge grooves and film lands in the test elements. Furthermore, the predictions, benchmarking experimental data, corroborate that short length inner-land grooves in an oil seal do not isolate the pressure fields of adjacent film lands and hence contribute greatly to the forced response of the mechanical element.

1.
San Andrés
,
L.
, 2009, “
Modern Lubrication Theory, Lecture Notes #2: Classical Lubrication Theory
,” http://rotorlab.tamu.edu/me626http://rotorlab.tamu.edu/me626
2.
Della Pietra
,
L.
, and
Adiletta
,
G.
, 2002, “
The Squeeze Film Damper Over Four Decades of Investigations. Part I: Characteristics and Operating Features
,”
Shock Vib. Dig
,
34
(
1
), pp.
3
26
.
3.
Della Pietra
,
L.
, and
Adiletta
,
G.
, 2002, “
The Squeeze Film Damper Over Four Decades of Investigations. Part II: Rotordynamic Analyses With Rigid and Flexible Rotors
,”
Shock Vib. Dig.
0583-1024,
34
(
2
), pp.
97
126
.
4.
San Andrés
,
L.
, 1985, “
Effect of Fluid Inertia Effect on Squeeze Film Damper Force Response
,” Ph.D. thesis, Texas A&M University, College Station, TX.
5.
Delgado
,
A.
, 2008, “
A Linear Fluid Inertia Model for Improved Prediction of Force Coefficients in Grooved Squeeze Film Dampers and Grooved Oil Seal Rings
,” Ph.D. thesis, Texas A&M University, College Station, TX.
6.
Kuzma
,
D. C.
, 1968, “
Fluid Inertia Effects in Squeeze Films
,”
Appl. Sci. Res.
0003-6994,
18
, pp.
15
20
.
7.
Reinhardt
,
F.
, and
Lund
,
J. W.
, 1975, “
The Influence of Fluid Inertia on the Dynamic Properties of Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
97
(
1
), pp.
154
167
.
8.
Tichy
,
J. A.
, 1983, “
The Effect of Fluid Inertia in Squeeze Film Damper Bearings: A Heuristic and Physical Description
,”
ASME
Paper No. 83-GT-177.
9.
Brennen
,
C.
, 1976, “
On the Flow in an Annulus Surrounding a Whirling Cylinder
,”
J. Fluid Mech.
0022-1120,
75
(
01
), pp.
173
191
.
10.
Modest
,
M. F.
, and
Tichy
,
J. A.
, 1978, “
Squeeze-Film Flow in Arbitrary Shaped Journal Bearings Subject to Oscillations
,”
ASME J. Lubr. Technol.
0022-2305,
100
(
3
), pp.
323
330
.
11.
Tichy
,
J. A.
, 1982, “
Effects of Fluid Inertia and Viscoelasticity on Squeeze-Film Bearing Forces
,”
ASLE Trans.
0569-8197,
25
(
1
), pp.
125
132
.
12.
Tichy
,
J. A.
, and
Modest
,
M. F.
, 1980, “
A Simple Low Deborah Number Model for Unsteady Hydrodynamic Lubrication Including Fluid Inertia
,”
J. Rheol.
0148-6055,
24
(
6
), pp.
829
845
.
13.
Tichy
,
J. A.
, 1984, “
Effects of Fluid Inertia and Viscoelasticity on the One-Dimensional Bearing
,”
ASLE Trans.
0569-8197,
27
(
2
), pp.
164
167
.
14.
Mulcahy
,
T. M.
, 1980, “
Fluid Forces on Rods Vibrating in Finite Length Annular Regions
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
47
(
2
), pp.
234
246
.
15.
San Andrés
,
L.
, and
Vance
,
J.
, 1986, “
Effect of Fluid Inertia on Squeeze-Film Damper Forces for Small-Amplitude Circular-Centered Motions
,”
ASLE Trans.
0569-8197,
30
(
1
), pp.
63
68
.
16.
Zhang
,
J. X.
, and
Roberts
,
J. B.
, 1993, “
Observations on the Nonlinear Fluid Forces in Short Cylindrical Squeeze Film Dampers
,”
ASME J. Tribol.
0742-4787,
115
(
4
), pp.
692
698
.
17.
Zhang
,
J. X.
, 1997, “
Fluid Inertia Effects on the Performance of Short and Long Squeeze Film Dampers Execution Periodic Vibration
,”
ASME J. Tribol.
0742-4787,
119
(
2
), pp.
306
314
.
18.
Qingchang
,
T.
,
Wei
,
L.
, and
Jun
,
Z.
, 1997, “
Fluid Forces in Short Squeeze-Film Damper Bearings
,”
Tribol. Int.
0301-679X,
30
(
10
), pp.
733
738
.
19.
San Andrés
,
L.
, 1992, “
Analysis of Short Squeeze Film Dampers With a Central Groove
,”
ASME J. Tribol.
0742-4787,
114
(
4
), pp.
659
665
.
20.
Arauz
,
G.
, and
San Andrés
,
L.
, 1994, “
Effect of a Circumferential Feeding Groove on the Dynamic Force Response of a Short Squeeze Film Damper
,”
ASME J. Tribol.
0742-4787,
116
(
2
), pp.
369
377
.
21.
Arauz
,
G.
, and
San Andrés
,
L.
, 1996, “
Experimental Study on the Effect of a Circumferential Feeding Groove on the Dynamic Force Response of a Sealed Squeeze Film Damper
,”
ASME J. Tribol.
0742-4787,
118
(
4
), pp.
900
905
.
22.
Zhang
,
J. X.
, and
Roberts
,
J. B.
, 1996, “
Force Coefficients for a Centrally Grooved Short Squeeze Film Damper
,”
ASME J. Tribol.
0742-4787,
118
(
3
), pp.
608
616
.
23.
Ellis
,
J.
,
Roberts
,
J. B.
, and
Hosseini
,
S. A.
, 1990, “
The Complete Determination of Squeeze-Film Linear Dynamic Coefficients From Experimental Data
,”
ASME J. Tribol.
0742-4787,
112
(
4
), pp.
712
724
.
24.
Zhang
,
J. X.
,
Roberts
,
J. B.
, and
Ellis
,
J.
, 1994, “
Experimental Behavior of a Short Cylindrical Squeeze Film Damper Executing Circular Centered Orbits
,”
ASME J. Tribol.
0742-4787,
116
(
3
), pp.
528
534
.
25.
Qingchang
,
T.
,
Ying
,
C.
, and
Lyjiang
,
W.
, 1997, “
Effect of a Circumferential Feeding Groove on Fluid Force in Short Squeeze Film Dampers
,”
Tribol. Int.
0301-679X,
30
(
6
), pp.
409
416
.
26.
Lund
,
J. W.
,
Myllerup
,
C. M.
, and
Hartmann
,
H.
, 2003, “
Inertia Effects in Squeeze-Film Damper Bearings Generated by Circumferential Oil Supply Groove
,”
ASME J. Vibr. Acoust.
0739-3717,
125
(
4
), pp.
495
499
.
27.
Kim
,
K. J.
, and
Lee
,
C. W.
, 2005, “
Dynamic Characteristics of Sealed Squeeze Film Damper With a Central Feeding Groove
,”
ASME J. Tribol.
0742-4787,
127
(
1
), pp.
103
111
.
28.
San Andrés
,
L.
, and
Vance
,
J. M.
, 1986, “
Experimental Measurement of the Dynamic Pressure Distribution in a Squeeze Film Damper Executing Circular Centered Motions
,”
ASLE Trans.
0569-8197,
30
(
3
), pp.
332
383
.
29.
Zeidan
,
F. Y.
, and
Vance
,
J. M.
, 1990, “
Cavitation and Air Entrainment Effects on the Response of Squeeze Film Supported Rotors
,”
ASME J. Tribol.
0742-4787,
112
, pp.
347
353
.
30.
Arauz
,
G. L.
, 1993, “
Experimental Study of a Grooved Squeeze Film Damper
,” M.Sc. thesis, Texas A&M University, College Station, TX.
31.
San Andrés
,
L.
, and
Delgado
,
A.
, 2007, “
Identification of Force Coefficients in a Squeeze Film Damper With a Mechanical End Seal-Centered Circular Orbit Tests
,”
ASME J. Tribol.
0742-4787,
129
(
3
), pp.
660
668
.
32.
Childs
,
D. W.
,
Rodriguez
,
L. E.
,
Cullotta
,
V.
,
Al-Ghasem
,
A.
, and
Graviss
,
M.
, 2006, “
Rotordynamic-Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short, Laminar-Flow Annular Seals
,”
ASME J. Tribol.
0742-4787,
128
(
2
), pp.
378
387
.
33.
Semanate
,
J.
, and
San Andrés
,
L.
, 1993, “
Analysis of Multi-Land High Pressure Oil Seals
,”
STLE Tribol. Trans.
1040-2004,
36
(
4
), pp.
661
669
.
34.
Kirk
,
R.
, 1986, “
Oil Seal Dynamic Considerations for Analysis of Centrifugal Compressors
,”
Proceedings of the 15th Turbomachinery Symposium
, Houston, TX, pp.
25
34
.
35.
Allaire
,
P. E.
, and
Kocur
,
J. A.
, Jr.
, 1985, “
Oil Seal Effects and Subsynchronous Vibrations in High-Speed Compressors
,”
Proc. Symposium on Instability in Rotating Machinery
, Carson City, Nevada, June 10–14, NASA Conf. Publ. 2409, pp.
205
223
.
36.
Baheti
,
S.
, and
Kirk
,
R.
, 1995, “
Finite Element Thermo-Hydrodynamic Solution of Floating Ring Seals for High Pressure Compressors Using the Finite-Element Method
,”
STLE Tribol. Trans.
1040-2004,
38
, pp.
96
97
.
37.
Childs
,
D. W.
,
Graviss
,
M.
, and
Rodriguez
,
L. E.
, 2007, “
The Influence of Groove Size on the Static and Rotordynamic Characteristics of Short, Laminar-Flow Annular Seals
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
398
406
.
38.
Graviss
,
M.
, 2005, “
The Influence of a Central Groove on Static and Dynamic Characteristics of an Annular Liquid Seal With Laminar Flow
,” MS thesis, Texas A&M University, College Station, TX.
39.
Sinha
,
S. N.
,
Gupta
,
A. K.
, and
Oberai
,
M. M.
, 1982, “
Laminar Separating Flow Over Backsteps and Cavities Part II: Cavities
,”
AIAA J.
0001-1452,
20
(
3
), pp.
370
375
.
40.
Wyssmann
,
H. R.
,
Pham
,
T. C.
, and
Jenny
,
R. C.
, 1984, “
Prediction of Stiffness and Damping Coefficients for Centrifugal Compressor Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
920
926
.
41.
Florjancic
,
S.
, 1990, “
Annular Seals of High Energy Centrifugal Pumps: A New Theory and Full Scale Measurement of Rotordynamic Coefficients and Hydraulic Friction Factors
,” Ph.D. thesis, ETH Zürich, Switzerland.
42.
Marquette
,
O. R.
, 1994, “
A New Three-Control-Volume Theory for Circumferentially-Grooved Liquid Seals
,”
ASME J. Tribol.
0742-4787,
118
(
1
), pp.
276
285
.
You do not currently have access to this content.