Graphical Abstract Figure

CFD Analysis for Design and Optimization of SCO2-lubricated Bearings

Graphical Abstract Figure

CFD Analysis for Design and Optimization of SCO2-lubricated Bearings

Close modal

Abstract

Supercritical CO2 (SCO2) power cycles offer significant advantages in terms of thermal efficiency, cost-effectiveness, and environmental benefits. However, the successful implementation of these cycles depends on the design and analysis of bearings that can operate at high speeds and temperatures. Despite their importance, critical aspects like supporting bearings have received limited attention. This study addresses these gaps by developing sophisticated 3D computational fluid dynamics (CFD) models to accurately predict static characteristics like load capacity and leakage rate of SCO2-lubricated hybrid bearings. These bearings use SCO2 as the lubricating fluid due to the difficulty in maintaining separation between oil and the process fluid in oil-based bearings operating at extreme temperatures and pressures. An optimization tool, response surface optimization along with a 3D CFD model has been utilized to determine the bearing equilibrium point. After validation of the CFD model against available experimental measurements, a parametric study has been conducted to evaluate the effects of various geometric and operating parameters on bearing performance. The hybrid bearing geometry has been optimized based on the findings of the parametric study. The optimized bearing designs achieved a significant boost in load capacity while substantially reducing the leakage rate. This study introduces a new design/optimization process for SCO2-lubricated bearings using a 3D CFD model. The results indicate a strong correlation between load capacity, leakage rate, and variables such as orifice diameter, supply pressure, recess height, and recess length. These insights provide valuable guidance for practical SCO2-lubricated hybrid bearing design and optimization.

References

1.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.
2.
Feher
,
F. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
3.
Combs
,
O. V.
,
1977
,
An Investigation of the Supercritical CO2 Cycle (Feher Cycle) for Shipboard Application
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
4.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Woodhead Publishing
,
Cambridge, UK
.
5.
Allison
,
T. C.
,
Moore
,
J. J.
,
Wilkes
,
J. C.
, and
Brun
,
K.
,
2017
, “
Turbomachinery Overview for Supercritical CO2 Power Cycles
,”
Proceedings of 46th Turbomachinery and 33rd Pump Symposium
,
Houston, TX
,
Sept. 11–14
, pp.
1
15
.
6.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
,
Operation and Analysis of a Supercritical CO2 Brayton Cycle
, Sandia Report No. SAND2010-0171,
Sandia National Laboratories
,
Albuquerque, NM
.
7.
Chapman
,
P. A.
,
2016
, “
Advanced Gas Foil Bearing Design for Supercritical CO2 Power Cycles
,”
Proceedings of 5th International Symposium on Supercritical CO2 Power Cycles
,
San Antonio, TX
,
Mar. 28–31
, pp.
1
14
.
8.
Chapman
,
P. A.
,
2018
, “
Advanced Gas Foil Bearing Design for Supercritical CO2 Power Cycles
,”
Proceedings of 6th International Symposium on Supercritical CO2 Power Cycles
,
Pittsburgh, PA
,
Mar. 27–29
, pp.
1
19
.
9.
Rozeanu
,
L.
, and
Kennedy
,
F. E.
,
2001
, “
Wear of Hydrodynamic Journal Bearings
,”
Tribol. Ser.
,
39
, pp.
161
166
.
10.
Sharma
,
S. C.
,
Phalle
,
V. M.
, and
Jain
,
S. C.
,
2012
, “
Performance of a Noncircular 2-Lobe Multirecess Hydrostatic Journal Bearing With Wear
,”
Ind. Lubr. Tribol.
,
64
(
3
), pp.
171
181
.
11.
Jung
,
H.
,
Kim
,
K.
, and
Ryu
,
K.
,
2023
, “
On the Performance of Hydrostatic Journal Bearings in Air, Water, and Liquid Nitrogen: Measurements and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111011
.
12.
Childs
,
D.
, and
Hale
,
K.
,
1994
, “
A Test Apparatus and Facility to Identify the Rotordynamic Coefficients of High-Speed Hydrostatic Bearings
,”
ASME J. Tribol.
,
116
(
2
), pp.
337
343
.
13.
San Andrés
,
L.
,
Phillips
,
S.
, and
Childs
,
D.
,
2017
, “
A Water-Lubricated Hybrid Thrust Bearing: Measurements and Predictions of Static Load Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022506
.
14.
Rudloff
,
L.
,
Arghir
,
M.
,
Bonneau
,
O.
,
Guingo
,
S.
,
Chemla
,
G.
, and
Renard
,
E.
,
2012
, “
Experimental Analysis of the Dynamic Characteristics of a Hybrid Aerostatic Bearing
,”
ASME J. Tribol.
,
134
(
4
), p.
082503
.
15.
Fu
,
G.
, and
Untaroiu
,
A.
,
2017
, “
A Study of the Effect of Various Recess Shapes on Hybrid Journal Bearing Performance Using Computational Fluid Dynamics and Response Surface Method
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061104
.
16.
Guo
,
Z.
,
Hirano
,
T.
, and
Kirk
,
R. G.
,
2005
, “
Application of CFD Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
445
451
.
17.
Li
,
Q.
,
Zhang
,
S.
,
Ma
,
L.
,
Xu
,
W.
, and
Zheng
,
S.
,
2017
, “
Stiffness and Damping Coefficients for Journal Bearing Using the 3D Transient Flow Calculation
,”
J. Mech. Sci. Technol.
,
31
(
5
), pp.
2083
2091
.
18.
Zhu
,
J.
,
Chen
,
H.
, and
Chen
,
X.
,
2013
, “
Large Eddy Simulation of Vortex Shedding and Pressure Fluctuation in Aerostatic Bearings
,”
J. Fluids Struct.
,
40
, pp.
42
51
.
19.
Yang
,
J.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part I: TEHD-CFD Model Validation and Improvements
,”
ASME J. Tribol.
,
143
(
1
), p.
011801
.
20.
Chang
,
S. H.
,
Chan
,
C. W.
, and
Jeng
,
Y. R.
,
2015
, “
Discharge Coefficients in Aerostatic Bearings With Inherent Orifice-Type Restrictors
,”
ASME J. Tribol.
,
137
(
1
), p.
011705
.
21.
Pérez-Vigueras
,
D.
,
Colín-Ocampo
,
J.
,
Blanco-Ortega
,
A.
,
Campos-Amezcua
,
R.
,
Mazón-Valadez
,
C.
,
Rodríguez-Reyes
,
V. I.
, and
Landa-Damas
,
S. J.
,
2023
, “
Fluid Film Bearings and CFD Modeling: A Review
,”
Machines
,
11
(
11
), p.
1030
.
22.
Ghosh
,
M. K.
, and
Viswanath
,
N. S.
,
1987
, “
Recess Volume Fluid Compressibility Effect on the Dynamic Characteristics of Multirecess Hydrostatic Journal Bearings With Journal Rotation
,”
ASME J. Tribol.
,
109
(
4
), pp.
417
426
.
23.
Du
,
J.
, and
Liang
,
G.
,
2020
, “
Dynamic Coefficients and Stability Analysis of a Water-Lubricated Hydrostatic Bearing by Solving the Uncoupled Reynolds Equation
,”
Chin. J. Aeronaut.
,
33
(
8
), pp.
2110
2122
.
24.
San Andrés
,
L.
,
1990
, “
Turbulent Hybrid Bearings With Fluid Inertia Effects
,”
ASME J. Tribol.
,
112
(
4
), pp.
699
707
.
25.
San Andrés
,
L.
,
1990
, “
Approximate Analysis of Turbulent Hybrid Bearings: Static and Dynamic Performance for Centered Operation
,”
ASME J. Tribol.
,
112
(
4
), pp.
629
698
.
26.
Ali
,
M. S.
,
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2020
, “
Flow Field Instability and Rotordynamic Impedances for an Open Impeller Centrifugal Pump in Transient Four-Quadrant Regimes
,”
ASME Turbo Expo
,
Virtual Online
,
Sept. 21–25
, ASME, p. V10BT29A009.
27.
Ali
,
M. S.
,
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2021
, “
System Level Analysis of Compressor Eye-Labyrinth Seal Rotordynamic Forces: A Computational Fluid Dynamics Approach
,”
ASME Turbo Expo
,
Virtual Online
,
June 7–11
, ASME, p. V09BT28A004.
28.
Ali
,
S.
,
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2023
, “
Swirl Brake Design for Improved Rotordynamic Vibration Stability Based on Computational Fluid Dynamics System Level Modeling
,”
ASME Open J. Eng.
,
2
, p.
021039
.
29.
Sarfare
,
S.
,
Ali
,
M. S.
,
Palazzolo
,
A.
,
Rodefeld
,
M.
,
Conover
,
T.
,
Figliola
,
R.
,
Giridharan
,
G.
,
Wampler
,
R.
,
Bennett
,
E.
, and
Ivashchenko
,
A.
,
2023
, “
Computational Fluid Dynamics Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device
,”
ASME J. Biomech. Eng.
,
145
(
11
), p.
111008
.
30.
Shujan Ali
,
M.
, and
Castleberry
,
S.
,
2024
, “
Investigating the Hydrodynamics of Intravenous Drug Infusions
,”
Int. J. Pharm.
,
651
, p.
123752
.
31.
Ali
,
M. S.
,
Pandey
,
N.
,
Hadj-Nacer
,
M.
,
Greiner
,
M.
, and
Riyad
,
M. F.
,
2021
, “
Parametric Study of Two-Phase Flow in a Porous Wick of a Mechanically Pumped Loop Heat Pipe
,”
AIP Conf. Proc.
,
2324
(
1
).
32.
Ali
,
M. S.
,
2017
,
Modeling of Heat Transfer and Flow Patterns in a Porous Wick of a Mechanically Pumped Loop Heat Pipe: Parametric Study Using ANSYS Fluent
,
Master's thesis
,
University of Nevada
,
Reno, NV
.
33.
Faruqui
,
S. H. A.
,
Ali
,
M. S.
, and
Hossain
,
K. A.
,
2016
, “
Numerical Investigation of Aerodynamic Characteristics Over a Car for Optimizing the Shape of the Vehicle
,”
Proceedings of International Conference on Mechanical, Industrial and Energy Engineering
,
Khulna, Bangladesh
,
Dec. 26–27
, pp.
1
5
.
34.
ANSYS, Inc.
,
2020
,
ANSYS CFX-Solver Theory Guide, Release 2020R1
,
ANSYS
,
Canonsburg, PA
.
35.
ANSYS, Inc.
,
2020
,
ANSYS CFX-Solver Modeling Guide, Release 2020R1
,
ANSYS
,
Canonsburg, PA
.
36.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
37.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-Equation Local Correlation-Based Transition Model
,”
Flow Turbul. Combust.
,
95
(
4
), pp.
583
619
.
38.
National Institute of Standards and Technology (NIST)
, REFPROP, Reference Fluid Thermodynamic and Transport Properties Database, https://www.nist.gov/srd/refprop
39.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
40.
Huber
,
M. L.
,
Lemmon
,
E. W.
,
Bell
,
I. H.
, and
Mclinden
,
M. O.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
41.
ANSYS, Inc.
,
2020
,
ANSYS CFX Reference Guide, Release 2020R1
,
ANSYS
,
Canonsburg, PA
.
42.
Ameli
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2018
, “
Numerical Investigation of the Flow Behavior Inside a Supercritical CO2 Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
122604
.
43.
Khuri
,
A. I.
, and
Mukhopadhyay
,
S.
,
2010
, “
Response Surface Methodology
,”
Wiley Interdiscip. Rev. Comput. Stat.
,
2
(
2
), pp.
128
149
.
44.
San Andres
,
L.
,
Childs
,
D.
, and
Yang
,
Z.
,
1995
, “
Turbulent-Flow Hydrostatic Bearings: Analysis and Experimental Results
,”
Int. J. Mech. Sci.
,
37
(
8
), pp.
815
829
.
45.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2015
, “
Computational Fluid Dynamic Simulation of a Supercritical CO2 Compressor Performance Map
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072602
.
You do not currently have access to this content.