Abstract

Effective sealing is a critical challenge in achieving the full potential of supercritical carbon dioxide (sCO2) power generation. Leakages from sCO2 cycles can reduce efficiency by up to 0.65%, underscoring the need for advanced sealing solutions. This study explores an elastohydrodynamic (EHD) seal as a promising option, designed to minimize leakage and wear under sCO2 conditions. A fluid–solid coupling model, based on finite element analysis and computational fluid dynamics, was developed and experimentally validated. Proof-of-concept tests were conducted on a 2-in. static shaft seal with pressures up to 1.2 MPa, using polytetrafluoroethylene (PTFE) as the seal material. Both simulations and experiments revealed a quadratic leakage trend: leakage initially increased with pressure, peaked at about 6 g/s, and then declined to approximately 1.5 g/s at maximum pressure. The model proved efficient, converging in just 2 s, while providing insights into leakage rates, seal deformation, clearance pressure, and stress. In addition, a modified model was provided, which converged in less than 20 s with added accuracy. A parametric analysis further demonstrated the impact of key design factors on leakage, with results aligning with physical expectations. The proposed models could serve as a valuable design tool for EHD seals.

References

1.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
, p.
116447
.
2.
Lethcer
,
T. M.
,
2021
, “1—Global Warming—A Complex Situation,”
Climate Change
, 3rd ed.,
Elsevier
,
New York
, pp.
3
17
.
3.
Hazelkorn
,
E.
, and
Mihut
,
G.
,
2021
, “Introduction: Putting Rankings in Context Looking Back, Looking Forward,”
Research Handbook on University Rankings
, Vol.
911
,
Edward Elgar Publishing
, pp.
1
17
. DOI:10.4337/9781788974981.00008
4.
Domnikov
,
A.
,
Khodorovsky
,
M.
, and
Domnikova
,
L.
,
2022
, “
Methodological Approach to Choosing Alternatives for the Development of Energy Systems in Conditions of Uncertainty and Multi-Criteria
,”
Int. J. Energy Prod. Manage.
,
7
(
3
), pp.
276
286
.
5.
Safari
,
F.
,
2021
, “
Development and Analysis of Alternative Thermochemical Cycles for Hydrogen Production
,” PhD Thesis Dissertation, University of Ontario Institute of Technology, Oshawa, Canada.
6.
El-Din
,
Z.
,
Mosaad
,
A.
,
Taha
,
R. M. Y.
, and
Hamied
,
R. G. A.
,
2021
, “
Nanotechnology Sector Applications in Power and Farm Machinery: A Review
,”
J. Adv. Agric. Res.
,
26
(
2
), pp.
38
47
.
7.
Baloch
,
Z. A.
,
Tan
,
Q.
,
Kamran
,
H. W.
,
Nawaz
,
M. A.
,
Albashar
,
G.
, and
Hameed
,
J.
,
2021
, “
A Multi-perspective Assessment Approach of Renewable Energy Production: Policy Perspective Analysis
,”
Environ. Dev. Sustain.
,
24
(
2
), pp.
2164
2192
.
8.
Song
,
J.
,
Li
,
X. S.
,
Ren
,
X. D.
, and
Gu
,
C. W.
,
2018
, “
Performance Analysis and Parametric Optimization of Supercritical Carbon Dioxide (S-CO2) Cycle With Bottoming Organic Rankine Cycle (ORC)
,”
Energy
,
143
, pp.
406
416
.
9.
Michael
,
P.
,
Kacludis
,
A.
,
Zdankiewicz
,
E.
, and
Held
,
T.
,
2012
, “
Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 Can Displace Steam
,”
Power-Gen India & Central Asia 2012
,
New Delhi, India
,
Apr. 19–21
.
10.
Kim
,
M. S.
,
Bae
,
S. J.
,
Son
,
S.
,
Oh
,
B. S.
, and
Lee
,
J. I.
,
2019
, “
Study of Critical Flow for Supercritical CO2 Seal
,”
Int. J. Heat Mass Transfer
,
138
, pp.
85
95
.
11.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
12.
Hossein
,
N.
,
Mahmoudi
,
S. M. S.
, and
Nemati
,
A.
,
2017
, “
Exergy, Economic and Environmental Impact Assessment and Optimization of a Novel Cogeneration System Including a Gas Turbine, a Supercritical CO2 and an Organic Rankine Cycle (GT-HRSG/sCO2)
,”
Appl. Therm. Eng.
,
110
, pp.
1315
1330
.
13.
Bennett
,
J. A.
,
Paudel
,
W.
,
Clarens
,
A. F.
,
Weaver
,
B.
, and
Watson
,
C.
,
2018
, “
Computational Analysis of Seals for sCO2 Turbomachinery and Experimental Planning
,”
6th International Supercritical CO2 Power Cycles Symposium
,
Pittsburg, PA
,
Mar. 27–29
.
14.
Wright
,
S. A.
,
Pickard
,
P. S.
,
Fuller
,
R.
,
Radel
,
R. F.
, and
Vernon
,
M. E.
,
2009
, “
Supercritical CO2 Brayton Cycle Power Generation Development Program and Initial Test Results
,”
ASME Power Conference 2009
,
Albuquerque, NM
,
July 21–23
, Vol. 43505, pp.
573
583
.
15.
Bai
,
S.
,
Song
,
Y.
, and
Yang
,
J.
,
2022
, “
Elastic Deformation of Liquid Spiral Groove Face Seals Operating at High Speeds and Low Pressure
,”
Int. J. Mech. Sci.
,
226
, p.
107397
.
16.
Hooshang
,
H.
,
Walton
,
J. F.
, and
Córdova
,
J. L.
,
2018
, “
Technology Readiness of 5th and 6th Generation Compliant Foil Bearing for 10 MWE s-CO2 Turbomachinery Systems
,”
6th International Supercritical CO2 Power Cycles Symposium
,
Pittsburgh, PA
,
Mar. 27–29
.
17.
Wang
,
Z.
,
Zhang
,
B.
,
Chen
,
Y.
,
Yang
,
S.
,
Liu
,
H.
, and
Ji
,
H.
,
2022
, “
Investigation of Leakage and Heat Transfer Properties of the Labyrinth Seal on Various Rotation Speed and Geometric Parameters
,”
Coatings
,
12
(
5
), p.
586
.
18.
Han
,
L.
,
Wang
,
Y.
,
Liu
,
K.
,
Ban
,
Z.
,
Qin
,
B.
,
Liu
,
H.
, and
Dai
,
M.
,
2022
, “
Theoretical Leakage Equations Towards Liquid-Phase Flow in the Straight-Through Labyrinth Seal
,”
ASME J. Tribol.
,
144
(
3
), p.
031802
.
19.
Wu
,
T.
, and
Andrés
,
L. S.
,
2019
, “
Leakage and Dynamic Force Coefficients for Two Labyrinth Gas Seals: Teeth-on-Stator and Interlocking Teeth Configurations. A Computational Fluid Dynamics Approach to Their Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
042501
.
20.
Bidkar
,
R. A.
,
Sevincer
,
E.
,
Wang
,
J.
,
Thatte
,
A. M.
,
Mann
,
A.
,
Peter
,
M.
,
Musgrove
,
G.
,
Allison
,
T.
, and
Moore
,
J.
,
2017
, “
Low-Leakage Shaft-End Seals for Utility-Scale Supercritical CO2 Turboexpanders
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022503
.
21.
Su
,
H.
,
Rahmani
,
R.
, and
Rahnejat
,
H.
,
2017
, “
Performance Evaluation of Bidirectional Dry Gas Seals With Special Groove Geometry
,”
Tribol. Trans.
,
60
(
1
), pp.
58
69
.
22.
Rozova
,
L.
, and
Martynenko
,
G.
,
2020
, “
Information Technology in the Modeling of Dry Gas Seal for Centrifugal Compressors
,”
CMIS
, pp.
536
546
.
23.
Pröstler
,
S.
,
2002
, “
CFD Modeling of Brush Seals
,”
European CFX Conference
,
Munich, Germany
,
Sept. 16–18
.
24.
Liu
,
Y.
,
Yue
,
B.
,
Kong
,
X.
,
Chen
,
H.
, and
Lu
,
H.
,
2021
, “
Effects of Front Plate Geometry on Brush Seal in Highly Swirling Environments of Gas Turbine
,”
Energies
,
14
(
22
), p.
7768
.
25.
Hildebrandt
,
M.
,
Schwitzke
,
C.
, and
Bauer
,
H. J.
,
2021
, “
Analysis of Heat Flux Distribution During Brush Seal Rubbing Using CFD With Porous Media Approach
,”
Energies
,
14
(
7
), p.
1888
.
26.
Duran
,
E. T.
,
2022
, “
Brush Seal Contact Force Theory and Correlation With Tests
,”
Alexandria Eng. J.
,
61
(
4
), pp.
2925
2938
.
27.
Sarawate
,
N.
, and
Trivedi
,
D.
,
2021
, “
Rotating Brush Seal Design and Performance Testing
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition
,
Virtual Online
,
June 7–11
.
28.
Zhao
,
H.
,
Su
,
H.
, and
Chen
,
G.
,
2020
, “
Analysis of Total Leakage of Finger Seal With Side Leakage Flow
,”
Tribol. Int.
,
150
, p.
106371
.
29.
Yang
,
Y.
, and
Hughes
,
W. F.
,
1984
, “
An Elastohydrodynamic Analysis of Preloaded Sliding Seals
,”
ASLE Trans.
,
27
(
3
), pp.
197
202
.
30.
Xu
,
H.
, and
Lei
,
T.
,
1994
, “
A Ringless High Pressure Moving Seal up to 1200 MPa
,”
Tribol. Trans.
,
37
(
4
), pp.
767
770
.
31.
Xu
,
H.
,
Wong
,
P. L.
, and
Zhang
,
Z. M.
,
1999
, “
An EHL Analysis of an All-Metal Viscoelastic High-Pressure Seal
,”
ASME J. Tribol.
,
121
(
4
), pp.
916
920
.
32.
Nikas
,
G. K.
, and
Sayles
,
R. S.
,
2004
, “
Nonlinear Elasticity of Rectangular Elastomeric Seals and Its Effect on Elastohydrodynamic Numerical Analysis
,”
Tribol. Int.
,
37
(
8
), pp.
651
660
.
33.
Nikas
,
G. K.
,
2002
, “
Elastohydrodynamics and Mechanics of Rectangular Elastomeric Seals for Reciprocating Piston Rods
,”
ASME J. Tribol.
,
125
(
1
), pp.
60
69
.
34.
Stupkiewicz
,
S.
, and
Marciniszyn
,
A.
,
2005
, “
Elastohydrodynamic Lubrication and Finite Configuration Changes in Reciprocating Elastomeric Seals
,”
Tribol. Int.
,
42
(
5
), pp.
615
627
.
35.
Wong
,
P. L.
,
Xu
,
H.
, and
Zhang
,
Z.
,
1997
, “
Performance Evaluation of High Pressure Sleeve Seal
,”
Wear
,
210
(
1–2
), pp.
104
111
.
36.
Cesmeci
,
S.
,
Lyathakula
,
K. R.
,
Hassan
,
M. F.
,
Xu
,
H.
, and
Tang
,
J.
,
2022
, “
Analysis of an Elasto-hydrodynamic Seal by Using the Reynolds Equation
,”
Appl. Sci.
,
12
(
19
), p.
9501
.
37.
Lyathakula
,
K. R.
,
Cesmeci
,
S.
,
Hassan
,
M. F.
,
Xu
,
H.
, and
Tang
,
J.
,
2022
, “
A Proof-of-Concept Study of a Novel Elasto-hydrodynamic Seal for CO2
,”
Proceedings of the ASME 2022 Power Conference
,
Pittsburgh, PA
,
July 18–19
.
38.
Chen
,
Y.
,
Peng
,
X.
,
Jiang
,
J.
,
Meng
,
X.
, and
Li
,
J.
,
2018
, “
Experimental and Theoretical Studies of the Dynamic Behavior of a Spiral-Groove Dry Gas Seal at High-Speeds
,”
Tribol. Int.
,
125
, pp.
17
26
.
39.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C. E.
, and
Mortzheim
,
J.
,
2019
, “
Supercritical CO2 Tests for Hydrostatic Film Stiffness in Film-Riding Seals
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
40.
Tallman
,
J. A.
, and
Bidkar
,
R. A.
,
2018
, “
Heat Transfer Coefficient Characterization for Large Aspect-Ratio Thin Films in Film-Riding Seals
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 5B: Heat Transfer
,
Oslo, Norway
,
June 11–15
.
41.
Hayne
,
C.
,
Topu
,
A. A.
,
Hassan
,
M. F.
,
Sercer
,
G.
,
Xu
,
H.
, and
Cesmeci
,
S.
,
2024
, “
Modeling of a Novel Elastohydrodynamic Seal for sCO2 Power Cycles With Experimental Verification
,”
ASME 2024 Power Conference
,
Washington, DC
,
Sept. 15–18
.
42.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.
You do not currently have access to this content.