Abstract

Cutting fluids are crucial to machining, providing essential lubrication and thermal management during the process. Commercial Cutting Fluids (CCF) are generally based on mineral oils, with emulsifiers and additives that are produced chemically. Green Cutting Fluid (GCF), which is generally based on biodegradable plant-based oils, is an emerging alternative to CCF and is eco-friendly, non-toxic, and sustainable. In the present work, the viability of a coconut oil-based GCF has been evaluated to determine its suitability and effectiveness across a wide range of machining operations, by mimicking the surface roughness of various machining operations. For this, Ti–6Al–4V samples were prepared with unidirectional surface roughness in the 111- to 1350-nm range; the roughness range of various machining operations. The behavior of the GCF and CCF, including their Wettability, Interfacial Tension, Surface Energy, and tribological lubrication effectiveness, were studied and compared over these surfaces. The results show that the concentration of cutting fluid and surface roughness greatly influence the wettability and surface energy, respectively. GCF has shown competitive performance in comparison with CCF, showing its potential as a viable alternative to CCF . The article also includes a discussion on the sustainability and Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the GCF, and the work is in line with the United Nations Sustainable Development Goals (UN SDGs) 3, 11, 12, 13, and 15.

References

1.
Somarajan
,
S. P.
, and
Kailas
,
S. V.
,
2018
, “
Study and Comparison of Lubricity of Green and Commercial Cutting Fluid Using Tool-Chip Tribometer
,”
Tribol Online
,
13
(
6
), pp.
340
350
.
2.
Edachery
,
V.
,
Shashank
,
R.
, and
Kailas
,
S. V.
,
2021
, “
Influence of Surface Texture Directionality and Roughness on Wettability, Sliding Angle, Contact Angle Hysteresis, and Lubricant Entrapment Capability
,”
Tribol. Int.
,
158
, p.
106932
.
3.
Gajrani
,
K. K.
,
Suvin
,
P. S.
,
Kailas
,
S. V.
, and
Sankar
,
M. R.
,
2019
, “
Hard Machining Performance of Indigenously Developed Green Cutting Fluid Using Flood Cooling and Minimum Quantity Cutting Fluid
,”
J. Cleaner Prod.
,
206
, pp.
108
123
.
4.
Marques
,
A.
,
Suarez
,
M. P.
,
Sales
,
W. F.
, and
Machado
,
A. R.
,
2019
, “
Turning of Inconel 718 With Whisker-Reinforced Ceramic Tools Applying Vegetable-Based Cutting Fluid Mixed With Solid Lubricants by MQL
,”
J. Mater. Process. Technol.
,
266
, pp.
530
543
.
5.
Padmini
,
R.
,
Krishna
,
P. V.
, and
Rao
,
G. K. M.
,
2016
, “
Effectiveness of Vegetable Oil Based Nanofluids as Potential Cutting Fluids in Turning AISI 1040 Steel
,”
Tribol. Int.
,
94
, pp.
490
501
.
6.
Gajrani
,
K. K.
,
Ram
,
D.
, and
Sankar
,
M. R.
,
2017
, “
Biodegradation and Hard Machining Performance Comparison of Eco-Friendly Cutting Fluid and Mineral Oil Using Flood Cooling and Minimum Quantity Cutting Fluid Techniques
,”
J. Cleaner Prod.
,
165
, pp.
1420
1435
.
7.
Behera
,
B. C.
,
Chetan, Setti
,
D.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
Spreadability Studies of Metal Working Fluids on Tool Surface and its Impact on Minimum Amount Cooling and Lubrication Turning
,”
J. Mater. Process. Technol.
,
244
, pp.
1
16
.
8.
Suvin
,
P. S.
,
Gupta
,
P.
,
Horng
,
J. H.
, and
Kailas
,
S. V.
,
2020
, “
Evaluation of a Comprehensive Non-Toxic, Biodegradable and Sustainable Cutting Fluid Developed From Coconut Oil
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
9
), pp.
1842
1850
.
9.
Gajrani
,
K. K.
,
Suvin
,
P. S.
,
Kailas
,
S. V.
, and
Mamilla
,
R. S.
,
2019
, “
Thermal, Rheological, Wettability and Hard Machining Performance of MoS2 and CaF2 Based Minimum Quantity Hybrid Nano-Green Cutting Fluids
,”
J. Mater. Process. Technol.
,
266
, pp.
125
139
.
10.
Somashekaraiah
,
R.
,
Suvin
,
P. S.
,
Gnanadhas
,
D. P.
,
Kailas
,
S. V.
, and
Chakravortty
,
D.
,
2016
, “
Eco-Friendly, Non-Toxic Cutting Fluid for Sustainable Manufacturing and Machining Processes
,”
Tribol. Online
,
11
(
5
), pp.
556
567
.
11.
Sujith
,
S. V.
, and
Mulik
,
R. S.
,
2022
, “
Surface Integrity and Flank Wear Response Under Pure Coconut Oil-Al2O3 Nano Minimum Quantity Lubrication Turning of Al-7079/7 wt%-TiC In Situ Metal Matrix Composites
,”
ASME J. Tribol.
,
144
(
5
), p.
051701
.
12.
Korkmaz
,
M. E.
,
Gupta
,
M. K.
,
Ross
,
N. S.
, and
Sivalingam
,
V.
,
2023
, “
Implementation of Green Cooling/Lubrication Strategies in Metal Cutting Industries: A State of the Art Towards Sustainable Future and Challenges
,”
Sustainable Mater. Technol.
,
36
, p.
e00641
.
13.
Pinheiro
,
C. T.
,
Quina
,
M. J.
, and
Gando-Ferreira
,
L. M.
,
2021
, “
Management of Waste Lubricant Oil in Europe: A Circular Economy Approach
,”
Crit. Rev. Environ. Sci. Technol.
,
51
(
18
), pp.
2015
2050
.
14.
Rakesh
,
N.
, and
Dasappa
,
S.
,
2018
, “
Biosyngas for Electricity Generation Using Fuel Cells-A Gas Quality Assessment
,”
Proceedings of the 26th European Biomass Conference and Exhibition Proceedings
,
Copenhagen, Denmark
,
May 14–17
, pp.
708
712
.
15.
Narayana Sarma
,
R.
,
Shivapuji
,
A. M.
, and
Srinivasaiah
,
D.
,
2022
, “
Solid Oxide Fuel Cells Fueled by Carbonaceous Fuels: A Thermodynamics-Based Approach for Safe Operation and Experimental Validation
,”
Energy Sources, Part A
,
44
(
2
), pp.
3509
3531
.
16.
Narayana Sarma
,
R.
, and
Vinu
,
R.
,
2022
, “
Current Status and Future Prospects of Biolubricants: Properties and Applications
,”
Lubricants
,
10
(
4
), pp.
70
.
17.
Gupta
,
R. N.
, and
Harsha
,
A. P.
,
2017
, “
Synthesis, Characterization, and Tribological Studies of Calcium–Copper–Titanate Nanoparticles as a Biolubricant Additive
,”
ASME J. Tribol.
,
139
(
2
), pp.
021801
.
18.
Reeves
,
C. J.
,
Siddaiah
,
A.
, and
Menezes
,
P. L.
,
2019
, “
Friction and Wear Behavior of Environmentally Friendly Ionic Liquids for Sustainability of Biolubricants
,”
ASME J. Tribol.
,
141
(
5
), p.
051604
.
19.
Deuster
,
S.
, and
Schmitz
,
K.
,
2019
, “
Bio-Based Hydraulic Fluids in Mobile Machines: Substitution Potential in Construction Projects
,”
Proceedings of the Fluid Power Systems Technology
,
Longboat Key, FL
,
Oct. 7–9
.
20.
Narayana Sarma
,
R.
, and
Vinu
,
R.
,
2023
, “
An Assessment of Sustainability Metrics for Waste-to-Liquid Fuel Pathways for a Low Carbon Circular Economy
,”
Energy Nexus
,
12
, p.
100254
.
21.
Cui
,
X.
,
Li
,
C.
,
Zhang
,
Y.
,
Ding
,
W.
,
An
,
Q.
,
Liu
,
B.
,
Li
,
H. N.
, et al
,
2023
, “
Comparative Assessment of Force, Temperature, and Wheel Wear in Sustainable Grinding Aerospace Alloy Using Biolubricant
,”
Front. Mech. Eng.
,
18
(
1
), pp.
3
.
22.
Grzesik
,
W.
,
Kruszynski
,
B.
, and
Ruszaj
,
A.
,
2010
, “Surface Integrity of Machined Surfaces,”
Surface Integrity in Machining
,
J. Paulo
Davim
, ed.,
Springer London
,
London
, pp.
143
179
.
23.
Sneddon
,
S.
,
Xu
,
Y.
,
Dixon
,
M.
,
Rugg
,
D.
,
Li
,
P.
, and
Mulvihill
,
D. M.
,
2021
, “
Sensitivity of Material Failure to Surface Roughness: A Study on Titanium Alloys Ti64 and Ti407
,”
Mater. Des.
,
200
, pp.
109438
.
24.
Georgiev
,
G. A.
,
Baluschev
,
S.
,
Eftimov
,
P.
,
Bacheva
,
M.
, and
Landfester
,
K.
,
2024
, “
Addressing the Apparent Controversies Between the Contact Angle-Based Models for Estimation of Surface Free Energy: A Critical Review
,”
Colloids Interfaces
,
8
(
6
), p.
62
.
25.
Tai
,
B. L.
,
Dasch
,
J. M.
, and
Shih
,
A. J.
,
2011
, “
Evaluation and Comparison of Lubricant Properties in Minimum Quantity Lubrication Machining
,”
Mach. Sci. Technol.
,
15
(
4
), pp.
376
391
.
26.
Bart
,
J. C. J.
,
Gucciardi
,
E.
, and
Cavallaro
,
S.
,
2013
, “Environmental Life-Cycle Assessment (LCA) of Lubricants,”
Biolubricants Science and Technology
,
J. C. J.
Bart
,
E.
Gucciardi
, and
S.
Cavallaro
, eds.,
Woodhead Publishing Series in Energy
,
Cambridge, UK
, pp.
527
564
.
27.
Ekman
,
A.
, and
Börjesson
,
P.
,
2011
, “
Life Cycle Assessment of Mineral oil-Based and Vegetable Oil-Based Hydraulic Fluids Including Comparison of Biocatalytic and Conventional Production Methods
,”
Int. J. Life Cycle Assess.
,
16
(
4
), pp.
297
305
.
28.
Cunningham
,
B.
,
Battersby
,
N.
,
Wehrmeyer
,
W.
, and
Fothergill
,
C.
,
2003
, “
A Sustainability Assessment of a Biolubricant
,”
J. Ind. Ecol.
,
7
(
3–4
), pp.
179
192
.
29.
Puyt
,
R. W.
,
Lie
,
F. B.
, and
Wilderom
,
C. P. M.
,
2003
, “
The Origins of SWOT Analysis
,”
Long Range Plann.
,
56
(
3
), pp.
102304
.
30.
Malik
,
M. A. I.
,
Kalam
,
M. A.
,
Mujtaba
,
M. A.
, and
Almomani
,
F.
,
2023
, “
A Review of Recent Advances in the Synthesis of Environmentally Friendly, Sustainable, and Nontoxic bio-Lubricants: Recommendations for the Future Implementations
,”
Environ. Technol. Innov.
,
32
, p.
103366
.
31.
Stylianou
,
M.
,
Shiakallis
,
P.
,
Papamichael
,
I.
,
Voukkali
,
I.
, and
Zorpas
,
A. A.
,
2024
, “
Analyzing the SWOT of Circular Economy Development in Established Industrial Zones: A Case Study From Cyprus
,”
Sustainable Chem. Pharm.
,
39
, pp.
101513
.
32.
Sheldon
,
R. A.
,
2017
, “
The E Factor 25 Years on: the Rise of Green Chemistry and Sustainability
,”
Green Chem.
,
19
(
1
), pp.
18
43
.
33.
Edachery
,
V.
,
Swamybabu
,
V.
,
Adarsh
,
D.
, and
Kailas
,
S. V.
,
2022
, “
Influence of Surface Roughness Frequencies and Roughness Parameters on Lubricant Wettability Transitions in Micro-Nano Scale Hierarchical Surfaces
,”
Tribol. Int.
,
165
, pp.
107316
.
You do not currently have access to this content.