Abstract

In tribo-systems, tribological behavior is influenced by a combination of several mechanisms. Among them, plastic deformation mechanisms (PDMs) and tribo-chemical reactions (TCRs) are particularly significant. The article explores the role of these fundamental mechanisms during the dry sliding of a Ti6Al4V-pin against an SS316L disk. PDM was controlled by changing the sliding speed (0.01–1.5 ms−1). To explore the interdependence of TCR submechanisms, namely, the formation of a mechanically mixed layer (MML) and tribo-oxidation, the pin diameter was varied (2.1, 4.6, and 6.6 mm) while maintaining a constant vacuum environment and contact pressure. At low sliding speeds (0.01–0.3 ms−1), the high wear-rate and coefficient of friction (CoF) are due to the dominance of PDM, enabled by adiabatic shear banding (ASB). Within the sliding speed range of 0.3–0.7 ms−1, a durable and wear-resistant MML forms on the pin surface incorporating Fe transferred from the disk. As the MML attains its highest stable thickness (≈51 µm at 0.7 ms−1), the lowest values of wear-rate (18.15 × 10−4 mm3/Nm) and CoF (0.324) are observable. Above 0.7 ms−1, thermally induced phase transformation-assisted material softening leads to a substantial increase in wear-rate and CoF. The case is otherwise for the smallest pin (2.1 mm) sliding at 1.5 ms−1. As sliding speed increases, wear transitions from adhesion to mild abrasion and then to severe adhesion.

References

1.
Wang
,
C.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Liu
,
J.
,
Sun
,
Z.
,
Fu
,
X.
,
Zhou
,
W.
,
Ding
,
L.
, and
Jia
,
Z.
,
2023
, “
Stress-Dependent Subsurface Structural Transformations of Gradient Nanograin Ti–6Al–4V Alloy and Its Impact on Wear Behavior
,”
J. Mater. Res. Technol.
,
26
, pp.
8721
8737
.
2.
Philip
,
J. T.
,
Mathew
,
J.
, and
Kuriachen
,
B.
,
2019
, “
Tribology of Ti6Al4V: A Review
,”
Friction
,
7
(
6
), pp.
497
536
.
3.
Garbacz
,
H.
, and
Motyka
,
M.
,
2019
, “Tribology,”
Nanocrystalline Titanium
,
H.
Garbacz
,
I. P.
Semenova
,
S.
Zherebtsov
, and
M.
Motyka
, eds.,
Elsevier
,
New York
, pp.
193
208
.
4.
Kumar
,
D.
,
Deepak
,
K. B.
,
Muzakkir
,
S. M.
,
Wani
,
M. F.
, and
Lijesh
,
K. P.
,
2018
, “
Enhancing Tribological Performance of Ti–6Al–4V by Sliding Process
,”
Tribol. Mater. Surf. Interfaces
,
12
(
3
), pp.
137
143
.
5.
Deng
,
G.
,
Chong
,
Y.
,
Su
,
L.
,
Zhan
,
L.
,
Wei
,
P.
,
Zhao
,
X.
,
Zhang
,
L.
,
Tian
,
Y.
,
Zhu
,
H.
, and
Tsuji
,
N.
,
2022
, “
Mechanisms of Remarkable Wear Reduction and Evolutions of Subsurface Microstructure and Nano-Mechanical Properties During Dry Sliding of Nano-grained Ti6Al4V Alloy: A Comparative Study
,”
Tribol. Int.
,
169
, p.
107464
.
6.
Ashok Raj
,
J.
,
Pottirayil
,
A.
, and
Kailas
,
S. V.
,
2017
, “
Dry Sliding Wear Behavior of Ti–6Al–4V Pin Against SS316L Disk at Constant Contact Pressure
,”
ASME J. Tribol.
,
139
(
2
), p.
021603
.
7.
Zhou
,
Y.
,
Jiang
,
W.
,
Chen
,
W.
,
Ji
,
X. L.
,
Jin
,
Y. X.
, and
Wang
,
S. Q.
,
2018
, “
Modification of Tribolayers of a Titanium Alloy Sliding Against a Steel
,”
ASME J. Tribol.
,
140
(
4
), p.
042301
.
8.
Song
,
T.
,
Chen
,
Z.
,
Cui
,
X.
,
Lu
,
S.
,
Chen
,
H.
,
Wang
,
H.
,
Dong
,
T.
, et al
,
2023
, “
Strong and Ductile Titanium–Oxygen–Iron Alloys by Additive Manufacturing
,”
Nature
,
618
(
7963
), pp.
63
68
.
9.
Kümmel
,
D.
,
Schneider
,
J.
, and
Gumbsch
,
P.
,
2020
, “
Influence of Interstitial Oxygen on the Tribology of Ti6Al4V
,”
Tribol. Lett.
,
68
(
3
), p.
96
.
10.
Liu
,
Y.
,
Yang
,
D. Z.
,
He
,
S. Y.
, and
Wu
,
W. L.
,
2003
, “
Microstructure Developed in the Surface Layer of Ti–6Al–4V Alloy After Sliding Wear in Vacuum
,”
Mater. Charact.
,
50
(
4–5
), pp.
275
279
.
11.
Zhong
,
H.
,
Dai
,
L. Y.
,
Yue
,
Y.
,
Zhang
,
B.
,
Feng
,
Z. H.
,
Zhang
,
X. Y.
,
Ma
,
M. Z.
,
Khosla
,
T.
,
Xiao
,
J.
, and
Liu
,
R. P.
,
2017
, “
Friction and Wear Behavior of Annealed Ti–20Zr–6.5Al–4V Alloy Sliding Against 440C Steel in Vacuum
,”
Tribol. Int.
,
109
, pp.
571
577
.
12.
Lal
,
B.
,
Dey
,
A.
, and
Wani
,
M. F.
,
2022
, “
Effect of Frictional Heating on Mechanically Mixed Layers During Dry Sliding Contact of Ti–6Al–4V Alloys at High Temperature in Vacuum Condition
,”
Surf. Rev. Lett.
,
29
(
10
), p. 2250127.
13.
Kumar
,
D.
,
Lal
,
B.
,
Wani
,
M. F.
,
Philip
,
J. T.
, and
Kuriachen
,
B.
,
2019
, “
Dry Sliding Wear Behaviour of Ti–6Al–4V Pin Against SS316L Disc in Vacuum Condition at High Temperature
,”
Tribol. Mater. Surf. Interfaces
,
13
(
3
), pp.
182
189
.
14.
Wang
,
D.
,
Huang
,
C.
,
Hu
,
N.
, and
Wei
,
Q.
,
2024
, “
Multi-scale Wear Mechanism of Material Surface and Hinge Interface Based on TC4 Alloy in Space Environment
,”
ILT
,
76
(
5
), pp.
620
631
.
15.
Roberts
,
E. W.
,
2012
, “
Space Tribology: Its Role in Spacecraft Mechanisms
,”
J. Phys. D: Appl. Phys.
,
45
(
50
), p.
503001
.
16.
Billing
,
R.
, and
Fleischner
,
R.
,
2011
, “
Mars Science Laboratory Robotic Arm
,”
14th European Space Mechanisms & Tribology Symposium–ESMATS 2011
,
Constance, Germany
,
Sept. 28–30
, pp.
363
370
.
17.
Fleischner
,
R.
,
2013
, “
Insight Instrument Deployment Arm
,”
15th European Space Mechanisms & Tribology Symposium–ESMATS 2013
,
Noordwijk, The Netherlands
,
Sept. 25–27
.
18.
Nagaraj
,
C. M.
,
2007
, “
Fundamental Studies on Tribological Response of Titanium and Copper
, ” Ph.D. dissertation, Indian Institute of Science, Bangalore, India.
19.
Bowden
,
F. P.
,
Moore
,
A. J. W.
, and
Tabor
,
D.
,
1943
, “
The Ploughing and Adhesion of Sliding Metals
,”
J. Appl. Phys.
,
14
(
2
), pp.
80
91
.
20.
Zhang
,
P.
,
Li
,
S. X.
, and
Zhang
,
Z. F.
,
2011
, “
General Relationship Between Strength and Hardness
,”
Mater. Sci. Eng. A
,
529
, pp.
62
73
.
21.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Wear-Mechanism Maps
,”
Acta Metallurgica
,
35
(
1
), pp.
1
24
.
22.
Straffelini
,
G.
, and
Molinari
,
A.
,
1999
, “
Dry Sliding Wear of Ti–6Al–4V Alloy as Influenced by the Counterface and Sliding Conditions
,”
Wear
,
236
(
1–2
), pp.
328
338
.
23.
Straffelini
,
G.
,
Maines
,
L.
,
Pellizzari
,
M.
, and
Scardi
,
P.
,
2005
, “
Dry Sliding Wear of Cu–Be Alloys
,”
Wear
,
259
(
1–6
), pp.
506
511
.
24.
Philip
,
J. T.
,
Singh
,
K.
, and
Kailas
,
S. V.
,
2024
, “
Ti6Al4V Interacting With Al2O3 Under Ambient and Vacuum Conditions: Effect of Plastic Deformation and Tribo-chemical Reactions on Wear Mechanisms
,”
Wear
,
550–551
, p.
205404
.
25.
Ashok Raj
,
J.
, and
Kailas
,
S. V.
,
2020
, “
Evolution of Wear Debris Morphology During Dry Sliding of Ti–6Al–4V Against SS316L Under Ambient and Vacuum Conditions
,”
Wear
,
456–457
, p.
203378
.
You do not currently have access to this content.