Abstract

To investigate the lubrication mechanism of carbon nanospheres and compare their tribological performance with carbon powder, this study presented a comprehensive analysis of their potential as lubricant additives through both experimental testing and molecular dynamics simulations. Carbon nanospheres were synthesized using the hydrothermal method. Extensive comparisons were conducted between carbon powder and carbon nanospheres, focusing on material characterization, dispersion stability, antifriction performance, and antiwear capability. Findings revealed that carbon nanospheres outperformed carbon powder as lubricant additives in polyalphaolefin 10 (PAO 10) owing to their smaller particle size and spherical shape. Specifically, at a concentration of 1 wt%, a load of 50 N, a disk speed of 10 rpm, and a temperature of 25 °C, the addition of carbon nanospheres reduced the friction coefficient by 34% and wear volume by 35%. The improved tribological performance was linked to the ability of carbon nanospheres to fill the pits, improving the interface smoothness. Molecular dynamics simulation of carbon nanospheres effectively reflected substrate roughness in the bulk region and further confirmed that the filling effects increased the lubricant's load-bearing capacity, which contributed to the reduction of friction and wear. This study provided significant insights into the development of innovative high-performance lubricant additives for oil-based lubrication in metal friction pairs.

References

1.
Zheng
,
Z.
,
Guo
,
Z.
,
Liu
,
W.
, and
Luo
,
J.
,
2023
, “
Low Friction of Superslippery and Superlubricity: A Review
,”
Friction
,
11
(
7
), pp.
1121
1137
.
2.
Zhu
,
L.
,
Sun
,
Y.
, and
Wu
,
S.
,
2024
, “
Synthesis and Tribological Assessment of Oil-Based Nanolubricants Blended With Nano-Zeolite for Steel–Steel Contact
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
238
(
11
), pp.
1465
1477
.
3.
Gong
,
H.
,
Yu
,
C.
,
Zhang
,
L.
,
Xie
,
G.
,
Guo
,
D.
, and
Luo
,
J.
,
2020
, “
Intelligent Lubricating Materials: A Review
,”
Composites Part B
,
202
, p.
108450
.
4.
He
,
T.
,
Chen
,
N.
,
Fang
,
J.
,
Cai
,
G.
,
Wang
,
J.
,
Chen
,
B.
, and
Liang
,
Q.
,
2022
, “
Micro/Nano Carbon Spheres as Liquid Lubricant Additive: Achievements and Prospects
,”
J. Mol. Liq.
,
357
, p.
119090
.
5.
Ye
,
Q.
,
Liu
,
S.
,
Xu
,
F.
,
Zhang
,
J.
,
Liu
,
S.
, and
Liu
,
W.
,
2020
, “
Nitrogen-Phosphorus Codoped Carbon Nanospheres as Lubricant Additives for Antiwear and Friction Reduction
,”
ACS Appl. Nano Mater.
,
3
(
6
), pp.
5362
5371
.
6.
Liu
,
S.
,
Wang
,
Y.
,
Zhang
,
X.
,
Liu
,
S.
,
Ye
,
Q.
, and
Liu
,
W.
,
2023
, “
Sulfur-Containing Carbon Nanospheres as Lubricant Additives for Antiwear and Friction Reduction
,”
ACS Appl. Nano Mater.
,
6
(
19
), pp.
18539
18547
.
7.
Kotia
,
A.
,
Chowdary
,
K.
,
Srivastava
,
I.
,
Ghosh
,
S. K.
, and
Ali
,
M. K. A.
,
2020
, “
Carbon Nanomaterials as Friction Modifiers in Automotive Engines: Recent Progress and Perspectives
,”
J. Mol. Liq.
,
310
, p.
113200
.
8.
Duan
,
L.
,
Li
,
J.
, and
Duan
,
H.
,
2023
, “
Nanomaterials for Lubricating Oil Application: A Review
,”
Friction
,
11
(
5
), pp.
647
684
.
9.
Ruiz
,
V.
,
Yate
,
L.
,
Langer
,
J.
,
Kosta
,
I.
,
Grande
,
H. J.
, and
Tena-Zaera
,
R.
,
2019
, “
PEGylated Carbon Black as Lubricant Nanoadditive With Enhanced Dispersion Stability and Tribological Performance
,”
Tribol. Int.
,
137
, pp.
228
235
.
10.
Zhao
,
J.
,
Huang
,
Y.
,
He
,
Y.
, and
Shi
,
Y.
,
2021
, “
Nanolubricant Additives: A Review
,”
Friction
,
9
(
5
), pp.
891
917
.
11.
Wang
,
Y.
,
Zhang
,
T.
,
Qiu
,
Y.
,
Guo
,
R.
,
Xu
,
F.
,
Liu
,
S.
,
Ye
,
Q.
, and
Zhou
,
F.
,
2022
, “
Nitrogen-Doped Porous Carbon Nanospheres Derived From Hyper-Crosslinked Polystyrene as Lubricant Additives for Friction and Wear Reduction
,”
Tribol. Int.
,
169
, p.
107458
.
12.
Jiang
,
Z.
,
Sun
,
Y.
,
Liu
,
B.
,
Yu
,
L.
,
Tong
,
Y.
,
Yan
,
M.
,
Yang
,
Z.
, et al
,
2024
, “
Research Progresses of Nanomaterials as Lubricant Additives
,”
Friction
,
12
(
7
), pp.
1347
1391
.
13.
Wang
,
B.
,
Qiu
,
F.
,
Barber
,
G. C.
,
Zou
,
Q.
,
Wang
,
J.
,
Guo
,
S.
,
Yuan
,
Y.
, and
Jiang
,
Q.
,
2022
, “
Role of Nano-sized Materials as Lubricant Additives in Friction and Wear Reduction: A Review
,”
Wear
,
490–491
, p.
204206
.
14.
Uflyand
,
I. E.
,
Zhinzhilo
,
V. A.
, and
Burlakova
,
V. E.
,
2019
, “
Metal-Containing Nanomaterials as Lubricant Additives: State-of-the-Art and Future Development
,”
Friction
,
7
(
2
), pp.
93
116
.
15.
Ali
,
I.
,
Basheer
,
A. A.
,
Kucherova
,
A.
,
Memetov
,
N.
,
Pasko
,
T.
,
Ovchinnikov
,
K.
,
Pershin
,
V.
, et al.
,
2019
, “
Advances in Carbon Nanomaterials as Lubricants Modifiers
,”
J. Mol. Liq.
,
279
, pp.
251
266
.
16.
Guedes
,
A. E. D. S.
,
Mello
,
V. S.
,
Bohn
,
F.
, and
Alves
,
S. M.
,
2021
, “
Understanding the Influence of the Magnetic Field, Particle Size, and Concentration on the Tribological Performance of Superparananolubricants
,”
Tribol. Trans.
,
64
(
3
), pp.
551
561
.
17.
Kong
,
S.
,
Wang
,
J.
,
Hu
,
W.
, and
Li
,
J.
,
2020
, “
Effects of Thickness and Particle Size on Tribological Properties of Graphene as Lubricant Additive
,”
Tribol. Lett.
,
68
(
4
), p.
112
.
18.
Liu
,
L.
,
Zhou
,
M.
,
Jin
,
L.
,
Li
,
L.
,
Mo
,
Y.
,
Su
,
G.
,
Li
,
X.
,
Zhu
,
H.
, and
Tian
,
Y.
,
2019
, “
Recent Advances in Friction and Lubrication of Graphene and Other 2D Materials: Mechanisms and Applications
,”
Friction
,
7
(
3
), pp.
199
216
.
19.
Zhao
,
J.
,
Gao
,
T.
,
Li
,
Y.
,
He
,
Y.
, and
Shi
,
Y.
,
2021
, “
Two-Dimensional (2D) Graphene Nanosheets as Advanced Lubricant Additives: A Critical Review and Prospect
,”
Mater. Today Commun.
,
29
, p.
102755
.
20.
Gu
,
Y.
,
Fei
,
J.
,
Zheng
,
X.
,
Li
,
M.
,
Huang
,
J.
,
Qu
,
M.
, and
Zhang
,
L.
,
2021
, “
Graft PEI Ultra-antiwear Nanolayer Onto Carbon Spheres as Lubricant Additives for Tribological Enhancement
,”
Tribol. Int.
,
153
, p.
106652
.
21.
Ettefaghi
,
E.
,
Rashidi
,
A.
,
Ahmadi
,
H.
,
Mohtasebi
,
S. S.
, and
Pourkhalil
,
M.
,
2013
, “
Thermal and Rheological Properties of Oil-Based Nanofluids From Different Carbon Nanostructures
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
178
182
.
22.
Conrad
,
A.
,
Hodapp
,
A.
,
Hochstein
,
B.
,
Willenbacher
,
N.
, and
Jacob
,
K.-H.
,
2021
, “
Low-Temperature Rheology and Thermoanalytical Investigation of Lubricating Oils: Comparison of Phase Transition, Viscosity, and Pour Point
,”
Lubricants
,
9
(
10
), p.
99
.
23.
Li
,
D.
,
Kong
,
N.
,
Zhang
,
B.
,
Zhang
,
B.
,
Li
,
R.
, and
Zhang
,
Q.
,
2021
, “
Comparative Study on the Effects of Oil Viscosity on Typical Coatings for Automotive Engine Components Under Simulated Lubrication Conditions
,”
Diamond Relat. Mater.
,
112
, p.
108226
.
24.
Lee
,
J.
,
Chung
,
S.-H.
,
Kim
,
B.
,
Son
,
J.
,
Lin
,
Z.-H.
,
Lee
,
S.
, and
Kim
,
S.
,
2023
, “
Wear and Triboelectric Performance of Polymers With Non-polar Lubricants
,”
Tribol. Int.
,
178
, p.
108088
.
25.
Fang
,
J.
,
Cao
,
H.
,
Bai
,
P.
,
Meng
,
Y.
,
Ma
,
L.
, and
Tian
,
Y.
,
2025
, “
High-Pressure Rheological Properties of Polyalphaolefin and Ester Oil Blends and Their Impact on Lubrication
,”
Tribol. Int.
,
201
, p.
110262
.
26.
Mousavi
,
S. B.
,
Heris
,
S. Z.
, and
Estellé
,
P.
,
2020
, “
Experimental Comparison Between ZnO and MoS2 Nanoparticles as Additives on Performance of Diesel Oil-Based Nano Lubricant
,”
Sci. Rep.
,
10
(
1
), p.
5813
.
27.
Mariño
,
F.
,
López
,
E. R.
,
Arnosa
,
Á.
,
González Gómez
,
M. A.
,
Piñeiro
,
Y.
,
Rivas
,
J.
,
Alvarez-Lorenzo
,
C.
, and
Fernández
,
J.
,
2022
, “
ZnO Nanoparticles Coated With Oleic Acid as Additives for a Polyalphaolefin Lubricant
,”
J. Mol. Liq.
,
348
, p.
118401
.
28.
Lee
,
K.
,
Hwang
,
Y.
,
Cheong
,
S.
,
Choi
,
Y.
,
Kwon
,
L.
,
Lee
,
J.
, and
Kim
,
S. H.
,
2009
, “
Understanding the Role of Nanoparticles in Nano-oil Lubrication
,”
Tribol. Lett.
,
35
(
2
), pp.
127
131
.
29.
Nyholm
,
N.
, and
Espallargas
,
N.
,
2023
, “
Functionalized Carbon Nanostructures as Lubricant Additives—A Review
,”
Carbon
,
201
, pp.
1200
1228
.
30.
Rahman
,
M. M.
,
Islam
,
M.
,
Roy
,
R.
,
Younis
,
H.
,
AlNahyan
,
M.
, and
Younes
,
H.
,
2022
, “
Carbon Nanomaterial-Based Lubricants: Review of Recent Developments
,”
Lubricants
,
10
(
11
), p.
281
.
31.
Kinoshita
,
H.
,
Nishina
,
Y.
,
Alias
,
A. A.
, and
Fujii
,
M.
,
2014
, “
Tribological Properties of Monolayer Graphene Oxide Sheets as Water-Based Lubricant Additives
,”
Carbon
,
66
, pp.
720
723
.
32.
Alazemi
,
A. A.
,
Etacheri
,
V.
,
Dysart
,
A. D.
,
Stacke
,
L.-E.
,
Pol
,
V. G.
, and
Sadeghi
,
F.
,
2015
, “
Ultrasmooth Submicrometer Carbon Spheres as Lubricant Additives for Friction and Wear Reduction
,”
ACS Appl. Mater. Interfaces
,
7
(
9
), pp.
5514
5521
.
33.
Kumar
,
S.
,
Nehra
,
M.
,
Kedia
,
D.
,
Dilbaghi
,
N.
,
Tankeshwar
,
K.
, and
Kim
,
K.-H.
,
2019
, “
Nanodiamonds: Emerging Face of Future Nanotechnology
,”
Carbon
,
143
, pp.
678
699
.
34.
Ðorđević
,
L.
,
Arcudi
,
F.
,
Cacioppo
,
M.
, and
Prato
,
M.
,
2022
, “
A Multifunctional Chemical Toolbox to Engineer Carbon Dots for Biomedical and Energy Applications
,”
Nat. Nanotechnol.
,
17
(
2
), pp.
112
130
.
35.
Tian
,
Y.
,
Zhong
,
S.
,
Zhu
,
X.
,
Huang
,
A.
,
Chen
,
Y.
, and
Wang
,
X.
,
2015
, “
Mesoporous Carbon Spheres: Synthesis, Surface Modification and Neutral Red Adsorption
,”
Mater. Lett.
,
161
, pp.
656
660
.
36.
Yao
,
Y.
,
Xu
,
J.
,
Huang
,
Y.
, and
Zhang
,
T.
,
2024
, “
Synthesis and Applications of Carbon Nanospheres: A Review
,”
Particuology
,
87
, pp.
325
338
.
37.
Azman
,
N. F.
, and
Samion
,
S.
,
2019
, “
Dispersion Stability and Lubrication Mechanism of Nanolubricants: A Review
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
6
(
2
), pp.
393
414
.
38.
Li
,
Z.
,
Nasir
,
M.
,
Wang
,
W.
,
Kaito
,
K.
,
Zhang
,
C.
,
Suekane
,
T.
, and
Matsushita
,
S.
,
2023
, “
Impact of Oil Viscosity on Dispersion in the Aqueous Phase of an Immiscible Two-Phase Flow in Porous Media: An X-Ray Tomography Study
,”
Water Resour. Res.
,
59
(
10
), p.
e2023WR034849
.
39.
Shrestha
,
S.
,
Wang
,
B.
, and
Dutta
,
P.
,
2020
, “
Nanoparticle Processing: Understanding and Controlling Aggregation
,”
Adv. Colloid Interface Sci.
,
279
, p.
102162
.
40.
Farfan-Cabrera
,
L. I.
,
2019
, “
Tribology of Electric Vehicles: A Review of Critical Components, Current State and Future Improvement Trends
,”
Tribol. Int.
,
138
, pp.
473
486
.
41.
Cyriac
,
F.
,
Yi
,
T. X.
,
Poornachary
,
S. K.
, and
Chow
,
P. S.
,
2021
, “
Influence of Base Oil Polarity on the Tribological Performance of Surface-Active Engine Oil Additives
,”
Tribol. Lett.
,
69
(
3
), p.
87
.
42.
Wang
,
Y.
,
Lu
,
Q.
,
Xie
,
H.
,
Liu
,
S.
,
Ye
,
Q.
,
Zhou
,
F.
, and
Liu
,
W.
,
2024
, “
In-Situ Formation of Nitrogen Doped Microporous Carbon Nanospheres Derived From Polystyrene as Lubricant Additives for Anti-wear and Friction Reduction
,”
Friction
,
12
(
3
), pp.
439
451
.
43.
Ye
,
Q.
,
Liu
,
S.
,
Zhang
,
J.
,
Xu
,
F.
,
Zhou
,
F.
, and
Liu
,
W.
,
2019
, “
Superior Lubricity and Antiwear Performances Enabled by Porous Carbon Nanospheres With Different Shell Microstructures
,”
ACS Sustain. Chem. Eng.
,
7
(
14
), pp.
12527
12535
.
44.
Horng
,
J.-H.
,
Adhitya
, and
Hwang
,
Y.-L.
,
2023
, “
New Two-Stage Running-In Process With Particle Effect in Three-Body Lubrication
,”
Wear
,
530–531
, p.
205012
.
45.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2013
, “
On the Optimization of Running-In Operating Conditions in Applications Involving EHL Line Contact
,”
Wear
,
303
(
1–2
), pp.
130
137
.
46.
Dimić
,
A.
,
Vencl
,
A.
,
Ristivojević
,
M.
,
Mitrović
,
R.
,
Mišković
,
Ž.
, and
Milivojević
,
A.
,
2022
, “
Influence of the Running-In Process on the Working Ability of Contact Surfaces in Lubricated Sliding Conditions
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
236
(
4
), pp.
691
700
.
47.
Shan
,
Z.
,
Jia
,
X.
,
Wang
,
D.
,
Tian
,
Q.
,
Yang
,
J.
,
Su
,
Y.
, and
Song
,
H.
,
2023
, “
MXene/PFW@PDA Confined by Micro/Nano Cellulose Network in PAO Based Oil to Achieve Macroscopic Super-Lubrication of Engineered Steel Surface
,”
Tribol. Int.
,
187
, p.
108708
.
48.
Omrani
,
E.
,
Menezes
,
P. L.
, and
Rohatgi
,
P. K.
,
2019
, “
Effect of Micro- and Nano-sized Carbonous Solid Lubricants as Oil Additives in Nanofluid on Tribological Properties
,”
Lubricants
,
7
(
3
), p.
25
.
49.
Wu
,
B.
,
Sun
,
Y.
, and
Wu
,
S.
,
2024
, “
Molecular Dynamics Study of Nano-grinding Behavior for Silicon Wafer Workpieces With Nanoscale Roughness Under Diamond Abrasive Rotation and Translation
,”
Tribol. Lett.
,
72
(
1
), p.
26
.
50.
Zhao
,
R.
,
Mi
,
P.
,
Xu
,
S.
, and
Dong
,
S.
,
2020
, “
Structure and Properties of Poly-α-Olefins Containing Quaternary Carbon Centers
,”
ACS Omega
,
5
(
16
), pp.
9142
9150
.
51.
Liu
,
P.
,
Lu
,
J.
,
Yu
,
H.
,
Ren
,
N.
,
Lockwood
,
F. E.
, and
Wang
,
Q. J.
,
2017
, “
Lubricant Shear Thinning Behavior Correlated With Variation of Radius of Gyration Via Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
147
(
8
), p.
084904
.
52.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
53.
Mendelev
,
M. I.
,
Han
,
S.
,
Srolovitz
,
D. J.
,
Ackland
,
G. J.
,
Sun
,
D. Y.
, and
Asta
,
M.
,
2003
, “
Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron
,”
Philos. Mag.
,
83
(
35
), pp.
3977
3994
.
54.
Levitt
,
M.
, and
Warshel
,
A.
,
1975
, “
Computer Simulation of Protein Folding
,”
Nature
,
253
(
5494
), pp.
694
698
.
55.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
56.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields—II. From the Equation of State of a Gas
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
106
(
738
), pp.
463
477
.
57.
Zhou
,
Q.
,
Luo
,
D.
,
Hua
,
D.
,
Ye
,
W.
,
Li
,
S.
,
Zou
,
Q.
,
Chen
,
Z.
, and
Wang
,
H.
,
2022
, “
Design and Characterization of Metallic Glass/Graphene Multilayer With Excellent Nanowear Properties
,”
Friction
,
10
(
11
), pp.
1913
1926
.
58.
Zhang
,
X.
,
Fan
,
J.
,
Cui
,
Z.
,
Cao
,
T.
,
Shi
,
J.
,
Zhou
,
F.
,
Liu
,
W.
, and
Fan
,
X.
,
2024
, “
Structural Superlubricity at Homogenous Interface of Penta-graphene
,”
Friction
,
12
(
9
), pp.
2004
2017
.
59.
Zhu
,
X.
,
Wang
,
X.
,
Liu
,
Y.
,
Luo
,
Y.
,
Zhang
,
H.
,
Li
,
B.
, and
Zhao
,
X.
,
2024
, “
Probing the Friction Mechanism of Diamond-Like Carbon Films in Aqueous Environments Based on Molecular Dynamics Simulations
,”
Modell. Simul. Mater. Sci. Eng.
,
32
(
8
), p.
085019
.
60.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
61.
Mathew
,
N.
, and
Sewell
,
T. D.
,
2016
, “
Nanoindentation of the Triclinic Molecular Crystal 1,3,5-Triamino-2,4,6-Trinitrobenzene: A Molecular Dynamics Study
,”
J. Phys. Chem. C
,
120
(
15
), pp.
8266
8277
.
62.
Oyinbo
,
S. T.
, and
Jen
,
T.-C.
,
2020
, “
A Molecular Dynamics Investigation of the Temperature Effect on the Mechanical Properties of Selected Thin Films for Hydrogen Separation
,”
Membranes
,
10
(
9
), p.
241
.
63.
Zhang
,
Y.
,
Sun
,
Y.
, and
Wu
,
S.
,
2023
, “
Nanoscale Friction Analysis Using Asperity Cross-section and Longitudinal Section Area
,”
Mater. Today Commun.
,
37
, p.
107576
.
64.
Vargonen
,
M.
,
Yang
,
Y.
,
Huang
,
L.
, and
Shi
,
Y.
,
2013
, “
Molecular Simulation of Tip Wear in a Single Asperity Sliding Contact
,”
Wear
,
307
(
1–2
), pp.
150
154
.
You do not currently have access to this content.