The three-dimensional, multistage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic response of a blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated, so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational inlet and exit boundaries transparent to outgoing unsteady disturbances and to allow for the prescription of incoming aerodynamic excitations. The modified TURBO analysis has been applied to predict unsteady subsonic and transonic flows. The intent is to validate this nonlinear analysis partially for blade flutter applications via numerical results for benchmark unsteady flows, and to demonstrate this analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a three-dimensional version of the 10th Standard Cascade and unsteady transonic flows through the first-stage rotor of the NASA Lewis Rotor 67 fan. Some general correlations between aeromechanical stabilities and fan operating characteristics will be presented.

1.
Ayer
T. C.
, and
Verdon
J. M.
,
1998
, “
Validation of a Nonlinear Unsteady Aerodynamic Simulator for Vibrating Blade Rows
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
120
, pp.
112
121
.
2.
Bahkhle, M. A., and Keith, T. G., Jr., 1997, “A 3D Euler/Navier-Stokes Aeroelastic Code for Propulsion Applications,” AIAA Paper No. 97-2749.
3.
Beach, T. A., and Hoffman, G., 1992, “IGB Grid: User’s Manual (A Turbomachinery Grid Generation Code),” CR 189104, NASA.
4.
Caspar
J. R.
,
1983
, “
Unconditionally Stable Calculation of Transonic Potential Flow Through Cascades Using an Adaptive Mesh for Shock Capture
,”
ASME Journal of Engineering for Power
, Vol.
105
, pp.
504
513
.
5.
Chen, J. P., and Whitfield, D. L., 1993, “Navier-Stokes Calculations for the Unsteady Flowfield of Multi-stage Turbomachinery,” AIAA Paper 93-0676.
6.
Chima, R. V., 1991, “Viscous Three-Dimensional Calculations of Transonic Fan Performance,” Technical Report TM-103800, NASA.
7.
Chuang, H. A., and Verdon, J. M., 1998, “A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows,” CR 208511, NASA.
8.
Clark, W. S., and Hall, K. C., 1995, “A Numerical Model of the Onset of Stall Flutter in Cascades,” ASME Paper No. 95-GT-377.
9.
Dorney
D. J.
, and
Verdon
J. M.
,
1994
, “
Numerical Simulations of Unsteady Cascade Flows
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
116
, pp.
665
675
.
10.
Fransson, T. H., and Verdon, J. M., 1993, “Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow Turbomachine Cascades,” Unsteady Aerodynamics, Aeroacouslics and Aeroelasticity of Turbomachines and Propellers, H. M., Atassi, ed., Springer-Verlag, New York, pp. 859–889.
11.
Giles
M. B.
,
1988
, “
Calculation of Unsteady Wake Rotor Interaction
,”
Journal of Propulsion and Power
, Vol.
4
, No.
4
, pp.
356
362
.
12.
Hall
K. C.
, and
Lorence
C. B.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
800
809
.
13.
Holmes, D. G., Mitchell, B. E., and Lorence, C. B., 1998, “Three Dimensional Linearized Navier–Stokes Calculations for Flutter and Forced Response,” Unsteady Aerodynamics and Aeroelasticity of Turbomachines, T. H. Fransson, ed., Kluwer Academic Publishers, pp. 211–224.
14.
Huff, D. L., and Reddy, T. S. R., 1989, “Numerical Analysis of Supersonic Flow Through Oscillating Cascade Sections by Using a Deforming Grid,” AIAA Paper No. 89-2805.
15.
Janus, J. M., and Whitfield, D. L., 1989, “A Simple Time-Accurate Turbomachinery Algorithm With Numerical Solutions of an Uneven Blade Count Configuration,” AIAA Paper No. 89-0206.
16.
Montgomery, M. D., and Verdon, J. M., 1998, “A 3D Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows, Part 1: Aerodynamic and Numerical Formulations; Part 2: Unsteady Aerodynamic Response Predictions,” Unsteady Aerodynamics and Aeroelasticity of Turbomachines, T. H. Fransson, ed., Kluwer Academic Publishers, pp. 427–464.
17.
Rai
M. M.
,
1989
, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction; Part 1—Methodology, Part 2—Results
,”
AIAA Journal of Propulsion and Power
, Vol.
5
, No.
3
, pp.
305
319
.
18.
Rhie
C. M.
,
Zacharias
R. M.
,
Hobbs
D. E.
,
Sarathy
K. P.
,
Biederman
B. P.
,
Lejambre
C. R.
, and
Spear
D. A.
,
1994
, “
Advanced Transonic Fan Design Procedure Based on a Navier–Stokes Method
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
116
, pp.
291
297
.
19.
Soni, B. K., and Shih, M. H., 1991, “TIGER; Turbomachinery Interactive Grid Generation,” Proc. Third International Conference on Numerical Grid Generation in CFD, Barcelona, Spain.
20.
Strazisar, A. J., Wood, J. R., Hathaway, M. D., and Suder, K. L., 1989, “Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor,” Technical Report TP-2879, NASA.
21.
Verdon
J. M.
,
1989
a, “
The Unsteady Aerodynamic Response to Arbitrary Modes of Blade Motion
,”
Journal of Fluids and Structures
, Vol.
3
, No.
3
, pp.
255
274
.
22.
Verdon
J. M.
,
1989
b, “
The Unsteady Flow in the Far Field of an Isolated Blade Row
,”
Journal of Fluids and Structures
, Vol.
3
, No.
2
, pp.
123
149
.
23.
Verdon
J. M.
,
1993
, “
Unsteady Aerodynamic Methods for Turbomachinery Aeroelastic and Aeroacoustic Applications
,”
AIAA Journal
, Vol.
31
, No.
2
, pp.
235
250
.
This content is only available via PDF.
You do not currently have access to this content.