Abstract

Significant non-synchronous blade vibrations (NSVs) have been observed in an experimental three-stage high-speed compressor at part-speed conditions. High-amplitude acoustic modes, propagating around the circumference and originating in the highly loaded stage-3, have been observed in coherence with the structural vibration mode. In order to understand the occurring phenomena, a detailed numerical study has been carried out to reproduce the mechanism. Unsteady full-annulus Reynolds-averaged Navier–Stokes simulations of the whole setup have been performed using the solver elsA. The results revealed the development of propagating acoustic modes which are partially trapped in the annulus and are in resonance with an aerodynamic disturbance in rotor-3. The aerodynamic disturbance is identified as an unsteady separation of the blade boundary layer in rotor-3. The results indicate that the frequency and phase of the separation adapt to match those of the acoustic wave and are therefore governed by acoustic propagation conditions. Furthermore, the simulations clearly show the modulation of the propagating wave with the rotor blades, leading to a change of circumferential wave numbers while passing the blade row. To analyze if the effect is self-induced by the blade vibration, a non-coherent structural mode has been imposed in the simulations. Even at high vibration amplitude, the formerly observed acoustic mode did not change its circumferential wave number. This phenomenon is highly relevant to modern compressor designs, since the appearance of the axially propagating acoustic waves can excite blade vibrations if they coincide with a structural eigenmode, as observed in the presented experiments.

References

1.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,”
Twelfth International Symposium on Airbreathing Engines
,
Melbourne, Australia
, p.
14
.
2.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
,”
Turbo Expo of Turbo Expo 2006: Power for Land, Sea and Air
,
Atlanta, GA
, Vol.
4
, pp.
399
406
.
3.
Parker
,
R.
,
1984
, “
Acoustic Resonances and Blade Vibration in Axial Flow Compressors
,”
J. Sound Vib.
,
92
(
4
), pp.
529
539
.
4.
Brandstetter
,
C.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2019
, “
Acoustic and Convective Mechanisms Contributing to Non-Synchronous-Vibrations in a Multistage Compressor
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
, Vol.
7A
,
Phoenix, AZ
,
June 17–21
.
5.
Fiquet
,
A.-L.
,
Brandstetter
,
C.
,
Aubert
,
S.
, and
Philit
,
M.
,
2019
, “
Non-Synchronous Aeroacoustic Interaction in an Axial Multi-Stage Compressor
,”
ASME J. Turbomach.
,
141
(
10
), p.
101013
.
6.
Cumpsty
,
N. A.
,
2001
, “
Discussion: ‘Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex’
,”
ASME J. Turbomach.
,
123
(
3
), pp.
461
461
.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
,
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
7.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2000
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
8.
Möller
,
D.
,
Jüngst
,
M.
,
Holzinger
,
F.
,
Brandstetter
,
C.
,
Schiffer
,
H.-P.
, and
Leichtfuss
,
S.
,
2016
, “
Mechanism of Nonsynchronous Blade Vibration in a Transonic Compressor Rig
,”
ASME J. Turbomach.
,
139
(
1
), p.
011002
.
9.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
10.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
11.
Camp
,
T. R.
,
1999
, “
A Study of Acoustic Resonance in a Low-Speed Multistage Compressor
,”
ASME J. Turbomach.
,
121
(
1
), pp.
36
43
.
12.
Hellmich
,
B.
, and
Seume
,
J.
,
2006
, “
Causes of Acoustic Resonance in a High-Speed Axial Compressor
,”
Turbo Expo of Turbo Expo 2006: Power of Land, Sea and Air
,
Barcelona, Spain
, Vol.
6
, pp.
377
387
.
13.
Holzinger
,
F.
,
Wartzek
,
F.
,
Schiffer
,
H.-P.
,
Leichtfuss
,
S.
, and
Nestle
,
M.
,
2015
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Acoustic Resonance
,”
ASME J. Turbomach.
,
138
(
4
), p.
041001
.
14.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,” SAE Technical Paper, SAE International.
15.
Cooper
,
A. J.
, and
Peake
,
N.
,
2000
, “
Trapped Acoustic Modes in Aeroengine Intakes With Swirling Flow
,”
J. Fluid Mech.
,
419
(
1
), pp.
151
175
.
16.
Garnier
,
J.
,
Vercoutter
,
A.
, and
Talon
,
A.
,
2015
, “
Magnet-Coil Measurement Technology for Analyzing Turbomachine Blade Vibrations
,”
Surveillance-8
,
Roanne, France
.
17.
Bouchain
,
A.
,
Picheral
,
J.
,
Lahalle
,
E.
,
Vercoutter
,
A.
,
Burgardt
,
B.
, and
Talon
,
A.
,
2019
, “
New Possibilities for Analyzing Complex Asynchronous Blade Vibrations From Tip-Timing Data Using a Sparse Spectral Analysis Method
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
, Vol.
7B
,
Phoenix, AZ
,
June 17–21
.
18.
Brandstetter
,
C.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2019
, “
Compressible Modal Instability Onset in an Aerodynamically Mistuned Transonic Fan
,”
ASME J. Turbomach.
,
141
(
3
), p.
031004
.
19.
Cambier
,
L.
,
Heib
,
S.
, and
Plot
,
S.
,
2013
, “
The Onera elsA CFD Software: Input From Research and Feedback From Industry
,”
Mech. Ind.
,
14
(
3
), pp.
159
174
.
20.
Chu
,
B. T.
, and
Kovasznay
,
L. S. G.
,
1957
, “
Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas
,”
J. Fluid Mech.
,
3
(
Jan.
), pp.
494
514
.
21.
Emmons
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
(
4
), pp.
455
467
.
You do not currently have access to this content.