Abstract

For an axial compressor stator with tip gap, the boundary layer (BL) in the hub endwall region has a significant influence on the development and progression of the tip leakage vortex. Herein, the so-called BL skew, which develops through relative motion of the hub, is of particular interest. Therefore, experimental and numerical investigations of a single axial compressor stator row with varying tip gap height (tip gap height/chord length =2.0%|5.4%|6.7%) have been conducted. Comparing cases with rotating or stationary hub endwall segments upstream of the examined vanes allowed to determine the effect of the skewed and un-skewed inflow BL. The steady-state flow fields up- and downstream of the stator row were measured using five-hole pressure probes. For validation and to improve the understanding of the existing flow phenomena, 3D-Reynolds-averaged Navier–Stokes (RANS) CFD simulations using a commercial flow solver were carried out. Furthermore, analog cases with no tip gap were examined and considered in the comparisons to extend the knowledge on this BL characteristic. The results show that the BL skew has a major influence on the trajectory and size of the tip leakage vortex for the cases with tip clearance. The effect of reduction of the produced losses decreases with increasing tip gap height.

References

1.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.
2.
Inoue
,
M.
,
Kuroumaru
,
M.
, and
Fukuhara
,
M.
,
1986
, “
Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
7
14
.
3.
Klein
,
A.
,
1966
, “
Untersuchungen über den Einfluß der Zuströmgrenzschicht auf die Sekundärströmungen in den Beschaufelungen von Axialturbinen
,”
Forschung Ingenieurwesen A
,
32
(
6
), pp.
175
188
.
4.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
,
1954
, “
A Visualization Study of Secondary Flows in Cascades
,”
NACA Technical Report 1163
.
5.
Pallot
,
G.
,
Kato
,
D.
,
Kodama
,
H.
,
Matsuda
,
K.
,
Taniguchi
,
H.
,
Kato
,
H.
, and
Funazaki
,
K.-I.
,
2011
, “
The Effect of the Casing Movement Relative to the Blades on the Tip Leakage Loss in Axial Flow Compressors
,”
Proceedings of ASME Turbo Expo
, pp.
275
284
,
Paper No. GT2011-46182
.
6.
Varpe
,
M. K.
, and
Pradeep
,
A. M.
,
2013
, “
Numerical Investigation of the Effect of Moving Endwall and Tip Clearance on the Losses in a Low Speed Axial Flow Compressor Cascade
,”
Proceedings of the ASME Gas Turbine India Conference
,
Paper No. GTINDIA2013-3596
.
7.
Peter
,
L. J.
,
1995
, “
Influence of a Moving Endwall on the Tip Clearance Vortex in an Axial Compressor Cascade
,” Master thesis,
Air University
,
Hobson Way, OH
.
8.
Bode
,
C.
,
Hoffmann
,
J.
, and
Stark
,
U.
,
2016
, “
Effects of a Skewed Inlet Boundary Layer on the Aerodynamic Performance of a Stator-Hub Equivalent High-Turning Compressor Cascade
,”
Proceedings of ASME Turbo Expo
,
Paper No. GT2016-56087
.
9.
Moore
,
R. W.
, and
Richardson
,
D. L.
,
1957
, “
Skewed Boundary-Layer Flow Near the End Walls of a Compressor Cascade
,”
Trans. ASME
,
79
, pp.
1789
1800
.
10.
Boehle
,
M.
, and
Stark
,
U.
,
2007
, “
A Numerical Investigation of the Effect of End-Wall Boundary Layer Skew on the Aerodynamic Performance of a Low Aspect Ratio, High Turning Compressor Cascade
,”
Proceedings of IMECE
, pp.
555
564
,
Paper No. IMECE2007-44049
.
11.
Boos
,
P.
,
Möckel
,
H.
,
Henne
,
J. M.
, and
Selmeier
,
R.
,
1998
, “
Flow Measurement in a Multistage Large Scale Low Speed Axial Flow Research Compressor
,”
ASME International Gas Turbine and Aeroengine Congress and Exhibition
,
Paper No. 98-GT-432
.
12.
Künzelmann
,
M.
,
Mailach
,
R.
,
Müller
,
R.
, and
Vogeler
,
K.
,
2008
, “
Steady and Unsteady Flow Field in a Multistage Low-Speed Axial Compressor: A Test Case
,”
Proceedings of ASME Turbo Expo
,
Paper No. GT2008-50793
.
13.
Lange
,
M.
,
Rolfes
,
M.
,
Mailach
,
R.
, and
Schrapp
,
H.
,
2018
, “
Periodic Unsteady Tip Clearance Vortex Development in a Low-Speed Axial Research Compressor at Different Tip Clearances
,”
ASME J. Turbomach.
,
140
(
3
), p.
031005
.
14.
Busse
,
P.
,
Krug
,
A.
, and
Vogeler
,
K.
,
2014
, “
Effects of the Steady Wake-Tip Clearance Vortex Interaction in a Compressor Cascade: Part II—Numerical Investigations
,”
Proceedings of ASME Turbo Expo
,
Paper No. GT2014-26121
.
15.
Rolfes
,
M.
,
Lange
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2017
, “
Experimental and Numerical Investigation of a Circumferential Groove Casing Treatment in a Low-Speed Axial Research Compressor at Different Tip Clearances
,”
ASME J. Turbomach.
,
139
(
12
), pp.
1743
1756
.
16.
Lange
,
M.
,
Vogeler
,
K.
,
Mailach
,
R.
, and
Gomez
,
S. E.
,
2013
, “
An Experimental Verification of a New Design for Cantilevered Stators With Large Hub Clearances
,”
ASME J. Turbomach.
,
135
(
4
), pp.
23
34
.
You do not currently have access to this content.