Abstract

As a key technology to ensure turbine survival, blade cooling encompasses a whole range of strategies with ever-increasing geometric complexities. Flow measurement for turbine blades with such intricate internal and external cooling structures is very challenging and calls for non-intrusive, three-dimensional measuring techniques. As a response, this work utilizes magnetic resonance velocimetry (MRV) to measure the velocity field in a scaled turbine blade with engine-representative internal and film cooling structures. Internal cooling structures include leading edge impingement cooling, U-shaped serpentine passage with/without turbulence ribs at blade mid-chord, and trailing edge pin fins. External cooling structures include film holes near the leading edge stagnation point, at the blade tip, and on the trailing edge. Experiments were performed in water and the Reynolds number local to the leading edge, mid-chord, and trailing edge cooling channels falls within the range typically reported in the literature. This is the first time that MRV is used to measure the flow field of a turbine blade with all the typical internal and external cooling geometries combined. The results show that MRV has great capacity in measuring the complex fluid flow associated with blade cooling designs. Vortical flow features in leading edge impingement cooling, and at the U-bends of mid-chord serpentine channel are captured. Interestingly, internal flow around pin fins redistributes the velocity of external flow ejected from trailing edge slots and film holes, indicating strong coupling between the internal and film cooling flow of the turbine blade.

References

1.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
.
2.
Ghosh
,
S.
,
Fernandez
,
E.
, and
Kapat
,
J.
,
2022
, “
Fluid-Thermal Topology Optimization of Gas Turbine Blade Internal Cooling Ducts
,”
ASME J. Mech. Des.
,
144
(
5
), p.
051703
.
3.
Liang
,
C.
,
Rao
,
Y.
,
Luo
,
J.
, and
Luo
,
X.
,
2021
, “
Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel With Guiding Pin Fins for Turbine Blade Trailing Edge Cooling
,”
Int. J. Heat Mass Transfer
,
178
, pp.
1
15
.
4.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2022
, “
Experimental Study on Flow Behavior and Heat Transfer Enhancement With Distinct Dimpled Gas Turbine Blade Internal Cooling Channel
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072101
.
5.
Yeranee
,
K.
, and
Rao
,
Y.
,
2021
, “
A Review of Recent Studies on Rotating Internal Cooling for Gas Turbine Blades
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
85
113
.
6.
Zhang
,
J.
,
Zhang
,
S.
,
Wang
,
C.
, and
Tan
,
X.
,
2020
, “
Recent Advances in Film Cooling Enhancement: A Review
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1119
1136
.
7.
Song
,
Y. J.
,
Park
,
S. H.
,
Kang
,
Y. J.
, and
Kwak
,
J. S.
,
2021
, “
Effects of Trench Configuration on the Film Cooling Effectiveness of a Fan-Shaped Hole
,”
Int. J. Heat Mass Transfer
,
178
, pp.
1
14
.
8.
Paitich
,
L. C.
,
Richer
,
P.
,
Jodoin
,
B.
,
Pyo
,
Y.
,
Yun
,
S.
, and
Hong
,
Z.
,
2021
, “
Directional Effects of Effusion Cooling on the Cooling Film Effectiveness
,”
AIAA J.
,
60
(
1
), pp.
1
11
.
9.
Wambersie
,
A.
,
Wong
,
H.
,
Ireland
,
P.
, and
Mayo
,
I.
,
2021
, “
“Experiments of Transpiration Cooling Inspired Panel Cooling on a Turbine Blade Yielding Film Effectiveness Levels Over 95%
,”
Int. J. Turbomach. Propuls. Power
,
6
(
2
), pp.
1
12
.
10.
Elfert
,
M.
,
Jarius
,
M.
, and
Weigand
,
B.
,
2004
, “
Detailed Flow Investigation Using PIV in a Typical Turbine Cooling Geometry With Ribbed Walls
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, pp.
533
545
.
11.
Cheah
,
S.
,
Iacovides
,
H.
,
Jackson
,
D.
,
Ji
,
H.
, and
Launder
,
B.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
.
12.
Liou
,
T.-M.
,
Chen
,
C.-C.
, and
Chen
,
M.-Y.
,
2003
, “
Rotating Effect on Fluid Flow in Two Smooth Ducts Connected by a 180-Degree Bend
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
138
148
.
13.
Zheng
,
K.
,
Tian
,
W.
,
Qin
,
J.
, and
Hu
,
H.
,
2021
, “
An Experimental Study on the Improvements in the Film Cooling Performance by an Upstream Micro-Vortex Generator
,”
Exp. Therm. Fluid. Sci.
,
127
, p.
110410
.
14.
Straußwald
,
M.
,
Abram
,
C.
,
Sander
,
T.
,
Beyrau
,
F.
, and
Pfitzner
,
M.
,
2020
, “
Time-Resolved Temperature and Velocity Field Measurements in Gas Turbine Film Cooling Flows With Mainstream Turbulence
,”
Exp. Fluids
,
62
(
1
), pp.
1
17
.
15.
Freudenhammer
,
D.
,
Baum
,
E.
,
Peterson
,
B.
,
Böhm
,
B.
,
Jung
,
B.
, and
Grundmann
,
S.
,
2014
, “
Volumetric Intake Flow Measurements of an IC Engine Using Magnetic Resonance Velocimetry
,”
Exp. Fluids
,
55
(
5
), pp.
1
13
.
16.
Piro
,
M. H. A.
,
Wassermann
,
F.
,
Grundmann
,
S.
,
Tensuda
,
B.
,
Kim
,
S. J.
,
Christon
,
M.
,
Berndt
,
M.
,
Nishimura
,
M.
, and
Tropea
,
C.
,
2017
, “
Fluid Flow Investigations Within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics
,”
Int. J. Heat Fluid Flow
,
66
, pp.
27
42
.
17.
Hoffman
,
D. W.
,
Villafañe
,
L.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2020
, “
Experimental Study of Flow Inside a Centrifugal Fan Using Magnetic Resonance Velocimetry
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041019
.
18.
Wang
,
X.
,
Lei
,
Q.
,
Luo
,
J.
,
Ye
,
Y.
,
Wu
,
X.
,
Xiao
,
P.
, and
Liu
,
Y.
,
2021
, “
Visualization Study of Produced Oil Based on Magnetic Resonance Imaging Technology
,”
ACS Omega
,
6
(
4
), pp.
3244
3251
.
19.
Benson
,
M. J.
,
Helmer
,
D.
,
Van Poppel
,
B. P.
,
Duhaime
,
B.
,
Bindon
,
D.
,
Cooper
,
M.
,
Woodings
,
R.
, and
Elkins
,
C. J.
,
2019
, “
Detailed Three-Dimensional Velocity Field Measurements of a Complex Internal Cooling Flow Within a Gas Turbine Vane
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
, pp.
1
10
.
20.
Benson
,
M. J.
,
Bindon
,
D.
,
Cooper
,
M.
,
Todd Davidson
,
F.
,
Duhaime
,
B.
,
Helmer
,
D.
,
Woodings
,
R.
,
Van Poppel
,
B. P.
,
Elkins
,
C. J.
, and
Clark
,
J. P.
,
2022
, “
Detailed Velocity and Heat Transfer Measurements in an Advanced Gas Turbine Vane Insert Using Magnetic Resonance Velocimetry and Infrared Thermometry
,”
ASME J. Turbomach.
,
144
(
2
), p.
021009
.
21.
Saglam
,
S.
,
Krewinkel
,
R.
,
Domnick
,
C.
, and
Takeishi
,
K.
,
2020
, “
An Experimental and Numerical Investigation of the Three-Dimensional Flow Field and Heat Transfer of a Row of Impinging Jets
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Virtual, Online
,
Sept. 21–25
, p. V07AT15A027, 001-012.
22.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.
23.
Elkins
,
C. J.
,
Markl
,
M.
,
Iyengar
,
A.
,
Wicker
,
R.
, and
Eaton
,
J. K.
,
2004
, “
Full-Field Velocity and Temperature Measurements Using Magnetic Resonance Imaging in Turbulent Complex Internal Flows
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
702
710
.
24.
Iaccarino
,
G.
, and
Elkins
,
C. J.
,
2005
, “Rapid Techniques for Measuring and Modeling Turbulent Flows in Complex Geometries,”
Engineering Turbulence Modelling and Experiments 6
,
Elsevier
,
Sardinia
, pp.
3
16
.
25.
Siekman
,
M.
,
Helmer
,
D.
,
Hwang
,
W.
,
Laskowski
,
G.
,
Tan
,
E. T.
, and
Natsui
,
G.
,
2014
, “
A Combined CFD/MRV Study of Flow Through a pin Bank
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Düsseldorf, Germany
,
June 16–20
, p. V05AT12A007.
26.
Baek
,
S.
,
Lee
,
S.
,
Hwang
,
W.
, and
Park
,
J. S.
,
2019
, “
Experimental and Numerical Investigation of the Flow in a Trailing Edge Ribbed Internal Cooling Passage
,”
ASME J. Turbomach.
,
141
(
1
), p.
011012
.
27.
Tsuru
,
T.
,
Ishida
,
K.
,
Fujita
,
J.
, and
Takeishi
,
K.
,
2019
, “
Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging in a Lattice Cooling Channel
,”
ASME J. Turbomach.
,
141
(
6
), p.
061003
.
28.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2011
, “
Magnetic Resonance Imaging Studies of Flow and Mixing for Single-Hole Film Cooling
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
57
64
.
29.
Coletti
,
F.
,
Benson
,
M. J.
,
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Turbulent Transport in an Inclined Jet in Crossflow
,”
Int. J. Heat Fluid Flow
,
43
, pp.
149
160
.
30.
Ryan
,
K. J.
,
Bodart
,
J.
,
Folkersma
,
M.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2016
, “
Turbulent Scalar Mixing in a Skewed Jet in Crossflow: Experiments and Modeling
,”
Flow, Turbul. Combust.
,
98
(
3
), pp.
781
801
.
31.
Borup
,
D. D.
,
Fan
,
D.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2019
, “
Experimental Study of Periodic Free Stream Unsteadiness Effects on Discrete Hole Film Cooling in Two Geometries
,”
ASME J. Turbomach.
,
141
(
6
), p.
061006
.
32.
Gunady
,
I. E.
,
Milani
,
P. M.
,
Banko
,
A. J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2021
, “
Velocity and Concentration Field Measurements and Large Eddy Simulation of a Shaped Film Cooling Hole
,”
Int. J. Heat Fluid Flow
,
90
, p.
108837
.
33.
Williams
,
E. T.
,
Caniano
,
D. C.
,
Davis
,
G.
,
Ferrell
,
A. M.
,
Benson
,
M. J.
,
Van Poppel
,
B. P.
, and
Elkins
,
C. J.
,
2017
, “
Three Dimensional Measurements of a Turbine Blade Using Magnetic Resonance Thermometry and Magnetic Resonance Velocimetry
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, p. V008T010A037.
34.
Timko
,
L.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
.
35.
Weaver
,
S. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2011
, “
Microchannels With Manufacturing Roughness Levels
,”
ASME J. Turbomach.
,
133
(
4
), p.
041014
.
36.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
37.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2006
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
(
2
), pp.
310
320
.
38.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.
39.
Jing
,
Q.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2019
, “
Effects of Channel Outlet Configuration and Dimple/Protrusion Arrangement on the Blade Trailing Edge Cooling Performance
,”
Appl. Sci.
,
9
(
14
), p.
2900
.
40.
Wymer
,
D. T.
,
Patel
,
K. P.
,
Burke
,
W. F.
, 3rd
, and
Bhatia
,
V. K.
,
2020
, “
Phase-Contrast MRI: Physics, Techniques, and Clinical Applications
,”
Radiographics
,
40
(
1
), pp.
122
140
.
41.
Pelc
,
N. J.
,
Sommer
,
F. G.
,
Li
,
K. C.
,
Brosnan
,
T. J.
,
Herfkens
,
R. J.
, and
Enzmann
,
D. R.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Quart.
,
10
(
3
), pp.
125
147
.
PMID: 7811608
.
42.
Bruschewski
,
M.
,
Freudenhammer
,
D.
,
Buchenberg
,
W. B.
,
Schiffer
,
H.-P.
, and
Grundmann
,
S.
,
2016
, “
Estimation of the Measurement Uncertainty in Magnetic Resonance Velocimetry Based on Statistical Models
,”
Exp. Fluids
,
57
(
5
), pp.
1
13
.
43.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
4
), pp.
872
879
.
44.
Liou
,
T. M.
, and
Hwang
,
J. J.
,
1992
, “
Developing Heat Transfer and Friction in a Ribbed Rectangular Duct With Flow Separation at Inlet
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
3
), pp.
565
573
.
45.
Liou
,
T.-M.
, and
Hwang
,
J.-J.
,
1992
, “
Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
1
), pp.
56
64
.
46.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.
47.
Benson
,
M. J.
,
Banko
,
A. J.
,
Elkins
,
C. J.
,
An
,
D.-G.
,
Song
,
S.
,
Bruschewski
,
M.
,
Grundmann
,
S.
,
Borup
,
D. D.
, and
Eaton
,
J. K.
,
2020
, “
The 2019 MRV Challenge: Turbulent Flow Through a U-Bend
,”
Exp. Fluids
,
61
(
6
), pp.
1
17
.
You do not currently have access to this content.