Abstract

One of the main reasons for gas turbines’ performance losses is the deposition of dirt on the compressor blades. Dirt deposit has to be periodically removed to keep the engine performance as high as possible. This is the reason motivating the presence of online water washing systems in most compressor gas turbines. Such systems aim at cleaning the compressor blades to recover efficiency; thus, the larger the water flow, the better it is assumed the compressor is cleaned (fixing all the other conditions). In the present work, we simulate the long-term behavior of a real axial compressor, from the inlet to the first-stage rotor, subject to online water washing with different water flowrates. The frozen rotor approach is adopted to solve the flow field in the rotor region. Simulations are performed by using the unsteady k-ɛ realizable model coupled with a Lagrangian tracking of the injected liquid phase. Water droplet erosion is handled by using a semi-empirical model developed by the authors. In each simulation, 504,000 parcels have been tracked, providing statistically reliable predictions. To simulate the long-term evolution of the washing process, a discrete mesh morphing technique coupled with the use of specific scale factors is adopted. Each of the tested configurations is composed of three successive erosive steps up to the blade compressor end-of-life. By varying the water-to-air mass fraction (WAMF*), six different injection configurations are assessed in terms of long-time average washing efficiency and erosion risk. The results predicted show the dependence of the considered washing indices on water mass flowrate and set the stage for the development of a washing optimization tool, which can help the design and management processes. In scenarios where washing indices are given minimal importance and the objective is to reduce the risk of erosion, the optimal injection configuration was shown to correspond to a WAMF* value of 0.250. Conversely, when washing efficiency is prioritized, the optimal injection configuration has been shown to correspond to the case where WAMF* = 0.750.

References

1.
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
, and
Motiwala
,
H. M.
,
2001
, “
Gas Turbine Performance Deterioration
,”
Proceedings of 30th Turbomachinery Symposium
,
College Station, TX
, pp.
139
175
.
2.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
,
1989
, “
Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Technique
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
343
350
.
3.
Song
,
W. T.
,
Sohn
,
J. L.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
,
2003
, “
An Improved Analytic Model to Predict Fouling Phenomena in the Axial Compressor of Gas Turbine Engines
,”
International Gas Turbine Congress (IGTC)
,
Tokyo, Japan
,
Nov. 2–7
, Paper No. TS-095.
4.
Enyia
,
J. D.
,
Li
,
Y.
,
Igbong
,
D. I.
, and
Thank-God
,
I.
,
2015
, “
Industrial Gas Turbine On-Line Compressor Washing for Power Generation
,”
Int. J. Eng. Res. Technol.
,
4
(
8
), pp.
500
506
.
5.
Dominizi
,
I.
,
Gabriele
,
S.
,
Serra
,
A.
, and
Borello
,
D.
,
2020
, “
Comparative Life Cycle Assessment of Different Gas Turbine Axial Compressor Water Washing Systems
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2020-15206.
6.
Agbadede
,
R.
,
Pilidis
,
P.
,
Igie
,
U. L.
, and
Allison
,
I.
,
2015
, “
Experimental and Theoretical Investigation of the Influence of Liquid Droplet Size on Effectiveness of Online Compressor Cleaning for Industrial Gas Turbines
,”
J. Energy Inst.
,
88
(
4
), pp.
414
424
.
7.
Brun
,
K.
,
Grimley
,
T. A.
,
Foiles
,
W. C.
, and
Kurz
,
R.
,
2015
, “
Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042605
.
8.
Wang
,
L.
,
Yan
,
Z.
,
Long
,
F.
,
Shi
,
X.
, and
Tang
,
J.
,
2016
, “
Parametric Study of Online Aero-Engine Washing Systems
,”
International Conference on Aircraft Utility Systems
,
Beijing, China
,
Oct. 10–12
, pp.
273
277
.
9.
Madsen
,
S.
, and
Bakken
,
L. E.
,
2018
, “
Gas Turbine Fouling off-Shore; Effective Online Water Wash Through High Water-to-Air Ratio
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2018-75618.S.
10.
Casari
,
N.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Vulpio
,
A.
,
2021
, “
Performance Degradation Due to Fouling and Recovery After Washing in a Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031020
.
11.
Wang
,
L.
,
Hu
,
J.
,
Huo
,
J.
,
Liu
,
Q.
,
Wei
,
B.
,
Tang
,
J.
, and
Shi
,
X.
,
2018
, “
Study on the Cleaning Mechanism of the Fouling of the Compressor Blade
,”
CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018)
,
Guiyang, China
,
June 19–22
, pp.
1
5
.
12.
Igie
,
U.
,
Diez-Gonzalez
,
P.
,
Giraud
,
A.
, and
Minervino
,
O.
,
2016
, “
Evaluating Gas Turbine Performance Using Machine-Generated Data: Quantifying Degradation and Impacts of Compressor Washing
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122601
.
13.
Musa
,
G.
,
Igie
,
U.
,
Pilidis
,
P.
, and
Gowon
,
S.
,
2017
, “
Economic Viability of On-Line Compressor Washing for Different Rated Capacity
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, ASME Paper No: GT2017-64950.
14.
Margolis
,
H.
,
1991
, “
US Navy on-Line Compressor Washing of Marine Gas Turbine Engines
,”
Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition
,
Orlando, FL
,
June 3–6
.
15.
Wall
,
M.
,
Lee
,
R.
, and
Frost
,
S.
,
2006
, “
Offshore Gas Turbines (and Major Driven Equipment) Integrity and Inspection Guidance Notes
,” Research Report 430 Prepared by ESR Technology Ltd for the Health and Safety Executive.
16.
Meher-Homji
,
C. B.
, and
Bromley
,
A.
,
2004
, “
Gas Turbine Axial Compressor Fouling and Washing
,”
Proceedings of 33th Turbomachinery Symposium
,
Houston, TX
, pp.
163
192
.
17.
Oosting
,
J.
,
Boonstra
,
K.
,
De Haan
,
A.
,
Van Der Vecht
,
D.
,
Stalder
,
J. P.
, and
Eicher
,
U.
,
2007
, “
Online Compressor Washing on Large Frame 9-FA Gas Turbines Erosion on RO Compressor Blade Leading Edge Field Performance With a Novel on Line Wash System
,”
ASME Turbo Expo: Power for Land, Sea, and Air
, ASME Paper No: GT2007-28227.
18.
Andreoli
,
M.
,
Gabriele
,
S.
,
Venturini
,
P.
, and
Borello
,
D.
,
2019
, “
New Model to Predict Water Droplets Erosion Based on Erosion Test Curves. Application to On-Line Water Washing of a Compressor
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2019-92033.
19.
Kirols
,
H. S.
,
2015
, “
Water Droplet Erosion: Influencing Parameters, Representation, and Comparisons
,”
Master’s thesis
,
Concordia University
,
Montreal, Canada
.
20.
Seleznev
,
L. I.
,
Ryzhenkov
,
V. A.
, and
Mednikov
,
A. F.
,
2010
, “
Phenomenology of Erosion Wear of Constructional Steels and Alloys by Liquid Particles
,”
Therm. Eng.
,
57
(
9
), pp.
741
745
.
21.
Venturini
,
P.
,
Andreoli
,
M.
,
Borello
,
D.
,
Rispoli
,
F.
, and
Gabriele
,
S.
,
2019
, “
Modelling of Water Droplets Erosion on a Subsonic Compressor Cascade
,”
Flow Turbul. Combust.
,
103
(
4
), pp.
1109
1125
.
22.
Di Gruttola
,
F.
,
Agati
,
G.
,
Venturini
,
P.
,
Borello
,
D.
,
Rispoli
,
F.
,
Gabriele
,
S.
, and
Simone
,
D.
,
2020
, “
Numerical Study of Erosion due to Online Water Washing in Axial Flow Compressors
,”
Proceedings of ASME Turbo Expo 2020, Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2020-14767.
23.
Agati
,
G.
,
Di Gruttola
,
F.
,
Gabriele
,
S.
,
Simone
,
D.
,
Venturini
,
P.
, and
Borello
,
D.
,
2020
, “
Water Washing of Axial Flow Compressors: Numerical Study on the Fate of Injected Droplets
,”
E3S Web Conf. Volume 197, 75th National ATI Congress – #7 Clean Energy for All (ATI 2020)
,
Rome, Italy
,
Sept. 15–16
.
24.
Agati
,
G.
,
Di Gruttola
,
F.
,
Gabriele
,
S.
,
Simone
,
D.
,
Venturini
,
P.
, and
Borello
,
D.
,
2021
, “
Evaluation of Water Washing Efficiency and Erosion Risk in an Axial Compressor for Different Water Injection Conditions
,”
E3S Web Conf. Volume 312, 76th Italian National Congress ATI (ATI 2021)
,
Rome, Italy
,
Sept. 15–17
.
25.
Forsyth
,
P.
,
Gillespie
,
D.
, and
McGilvray
,
M.
,
2017
, “
Development and Applications of a Coupled Particle Deposition Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2017-63295.
26.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2018
, “
Modeling Deposition in Turbine Cooling Passages With Temperature Dependent Adhesion and Mesh Morphing
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2018-76251.
27.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2020
, “
Numerical Simulation of the Blade Aging Process in an Induced Draft Fan Due to Long Time Exposition to Fly Ash Particles
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011025
.
28.
Castorrini
,
A.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Venturini
,
P.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2019
, “
Computational Analysis of Performance Deterioration of a Wind Turbine Blade Strip Subjected to Environmental Erosion
,”
Comput. Mech.
,
1
(
21
).
29.
Castorrini
,
A.
,
Corsini
,
A.
,
Morabito
,
F.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2017
, “
Numerical Simulation with Adaptive Boundary Method for Predicting Time Evolution of Erosion Processes
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2017-64675.
30.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
,
Rispoli
,
F.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2020
, “
Computational Analysis of Particle-Laden-Airflow Erosion and Experimental Verification
,”
Comput. Mech.
,
65
(
6
), pp.
1549
1565
.
31.
Agati
,
G.
,
Castorrini
,
A.
,
Di Gruttola
,
F.
,
Gabriele
,
S.
,
Rispoli
,
F.
,
Simone
,
D.
,
Venturini
,
P.
, and
Borello
,
D.
,
2023
, “
Numerical Prediction of Long-Term Droplet Erosion and Washing Efficiency of Axial Compressors Through the Use of a Discrete Mesh Morphing Approach”, ASME
,”
J. Turbomach.
,
145
(
3
), p.
031009
.
32.
ANSYS, Inc.
,
2020
,
ANSYS Fluent Theory Guide, Release 2020 R2
,
ANSYS, Inc.
,
Southpointe
.
33.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
34.
Josserand
,
C.
, and
Thoroddsen
,
S. T.
,
2016
, “
Drop Impact on a Solid Surface
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
365
391
.
35.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.
36.
Stanton
,
D. W.
, and
Rutland
,
C. J.
,
1998
, “
Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting From Impinging Sprays
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3037
3054
.
37.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
”, SAE Technical Paper 2000-01-0271.
38.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiph. Flow
,
21
(
2
), pp.
151
173
.
39.
Agati
,
G.
,
Borello
,
D.
,
Evangelisti
,
A.
,
Gabriele
,
S.
,
Michelassi
,
V.
, and
Venturini
,
P.
,
2023
, “
Numerical Investigation of Liquid Film Formation and Erosion Risk in an Axial Compressor Subject to Water Washing by Means of a Droplets Distribution Statistical Analysis
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2023-103854.
40.
Lee
,
B. E.
,
Riu
,
K. J.
,
Shin
,
S. H.
, and
Kwon
,
S. B.
,
2003
, “
Development of a Water Droplet Erosion Model for Large Steam Turbine Blades
,”
KSME Int. J.
,
17
(
1
), pp.
114
121
.
You do not currently have access to this content.