Graphical Abstract Figure

Vortex structures with blade end slots control

Graphical Abstract Figure

Vortex structures with blade end slots control

Close modal

Abstract

Blade end slots have been proven to be an effective method to suppress corner separation, thereby improving the aerodynamic performance of the compressor. The unsteady effects of blade end slots affiliated with a highly loaded compressor cascade on corner separation control are investigated based on delayed detached eddy simulation under the Mach number of 0.59. The corner separation vortex structures between the datum blade and the end slotted blade are compared. The vortex topologies are markedly reorganized and suppressed by the blade end slots. Unsteady flow behaviors of separation vortex and the corresponding dynamic mechanisms are analyzed in both time and frequency domains. The interaction of the self-adaptive jet flow from the blade end slots to the corner separation flow results in smaller-scale vortices in the blade end region with a higher characteristic frequency. Consequently, the unsteady effects caused by corner separation vortices are significantly reduced in range and intensity through the enhancement of flow mixing and the rapid dissipation of corner separation vortices into larger-scale lower-frequency features. Furthermore, spatiotemporal features and dynamics of corner separation flow with blade end slot control are investigated using the enhanced dynamic mode decomposition method. Results show that the dominant unsteady flow behavior develops with better stability, the intermittency of low-frequency and large-scale behavior is reduced via the blade end slot control.

References

1.
Wennerstrom
,
A. J.
,
1990
, “
Highly Loaded Axial Flow Compressors: History and Current Developments
,”
ASME J. Turbomach.
,
112
(
4
), pp.
567
578
.
2.
Li
,
R.
,
Gao
,
L.
,
Zhao
,
L.
,
Ma
,
C.
, and
Lin
,
S.
,
2019
, “
Dominating Unsteadiness Flow Structures in Corner Separation Under High Mach Number
,”
AIAA J.
,
57
(
7
), pp.
2923
2932
.
3.
Hou
,
J.
,
Liu
,
Y.
,
Zhong
,
L.
,
Zhong
,
W.
, and
Tang
,
Y.
,
2022
, “
Effect of Vorticity Transport on Flow Structure in the Tip Region of Axial Compressors
,”
Phys. Fluids
,
34
(
5
), p.
055102
.
4.
Hou
,
J.
, and
Liu
,
Y.
,
2023
, “
Evolution of Unsteady Vortex Structures in the Tip Region of an Axial Compressor Rotor
,”
Phys. Fluids
,
35
(
4
), p.
045107
.
5.
Liu
,
Y.
,
Tang
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2019
, “
An Exponential Decay Model for the Deterministic Correlations in Axial Compressors
,”
ASME J. Turbomach.
,
141
(
2
), p.
021005
.
6.
Liu
,
Y.
,
Wei
,
X.
, and
Tang
,
Y.
,
2023
, “
Investigation of Unsteady Rotor–Stator Interaction and Deterministic Correlation Analysis in a Transonic Compressor Stage
,”
ASME J. Turbomach.
,
145
(
7
), p.
071004
.
7.
Liu
,
Y.
,
Zhao
,
S.
,
Wang
,
F.
, and
Tang
,
Y.
,
2024
, “
A Novel Method for Predicting Fluid–Structure Interaction With Large Deformation Based on Masked Deep Neural Network
,”
Phys. Fluids
,
36
(
2
), p.
027103
.
8.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2017
, “
Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: The Influence of Freestream Turbulence Intensity and Endwall Boundary Layer State
,”
ASME J. Turbomach.
,
139
(
2
), p.
021011
.
9.
Taylor
,
J. V.
,
2019
, “
Separated Flow Topology in Compressors
,”
ASME J. Turbomach.
,
141
(
9
), p.
091014
.
10.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
11.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
12.
Liu
,
Y.
,
Tang
,
Y.
,
Scillitoe
,
A. D.
, and
Tucker
,
P. G.
,
2020
, “
Modification of Shear Stress Transport Turbulence Model Using Helicity for Predicting Corner Separation Flow in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
142
(
2
), p.
021004
.
13.
Liu
,
Y.
,
Luo
,
P.
, and
Tang
,
Y.
,
2023
, “
Improved Prediction of Turbomachinery Flows Using Reynolds Stress Model With γ Transition Model
,”
Aerosp. Sci. Technol.
,
144
, p.
108812
.
14.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2008
, “
Control of Three-Dimensional Separations in Axial Compressor by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
(
1
), p.
011004
.
15.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2012
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME. J. Turbomach.
,
134
(
2
), p.
021010
.
16.
Li
,
Y.-H.
,
Wu
,
Y.
,
Zhou
,
M.
,
Su
,
C.-B.
,
Zhang
,
X.-W.
, and
Zhu
,
J.-Q.
,
2010
, “
Control of the Corner Separation in a Compressor Cascade by Steady and Unsteady Plasma Aerodynamic Actuation
,”
Exp. Fluid
,
48
(
6
), pp.
1015
1023
.
17.
Liu
,
Y.
,
Wang
,
F.
,
Zhao
,
S.
, and
Tang
,
Y.
,
2024
, “
A Novel Framework for Predicting Active Flow Control by Combining Deep Reinforcement Learning and Masked Deep Neural Network
,”
Phys. Fluids
,
36
(
3
), p.
037112
.
18.
Kadhim
,
H. T.
,
Rona
,
A.
,
Gostelow
,
J. P.
, and
Leschke
,
K.
,
2018
, “
Optimization of the Non-Axisymmetric Stator Casing of a 1.5 Stage Axial Turbine
,”
Int. J. Mech. Sci.
,
136
, pp.
503
514
.
19.
Chen
,
Y.
,
Yang
,
L.
, and
Zhong
,
J.
,
2019
, “
Numerical Study on Endwall Fence With Varying Geometrical Parameters in a Highly-Loaded Compressor Cascade
,”
Aerosp. Sci. Technol.
,
94
, p.
105390
.
20.
Su
,
L.
,
Qiang
,
X.
,
Zheng
,
T.
, and
Teng
,
J.
,
2021
, “
Effect of Undulating Blades on Highly Loaded Compressor Cascade Performance
,”
Proc. Inst. Mech. Eng. Part A-J. Power Energy
,
235
(
1
), pp.
17
28
.
21.
Hergt
,
A.
,
Meyer
,
R.
, and
Engel
,
K.
,
2012
, “
Effects of Vortex Generator Application on the Performance of a Compressor Cascade
,”
ASME J. Turbomach.
,
135
(
2
), p.
021026
.
22.
Liu
,
Y.
,
Sun
,
J.
,
Tang
,
Y.
, and
Lu
,
L.
,
2016
, “
Effect of Slot at Blade Root on Compressor Cascade Performance Under Different Aerodynamic Parameters
,”
Appl. Sci.
,
6
(
12
), p.
421
.
23.
Sun
,
J.
,
Ottavy
,
X.
,
Liu
,
Y.
, and
Lu
,
L.
,
2021
, “
Corner Separation Control by Optimizing Blade End Slots in a Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
114
, p.
106737
.
24.
Tang
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2018
, “
Solidity Effect on Corner Separation and Its Control in a High-Speed Low Aspect Ratio Compressor Cascade
,”
Int. J. Mech. Sci.
,
142
, pp.
304
321
.
25.
Tang
,
Y.
,
Liu
,
Y.
,
Lu
,
L.
,
Lu
,
H.
, and
Wang
,
M.
,
2017
, “
Experimental Investigation of Flow Control Using Blade End Slots in a Highly Loaded Compressor Cascade
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Hawaii, Maui
,
Dec. 16–21, 2017
, Hal-02387668.
26.
Tang
,
Y.
,
Liu
,
Y.
,
Lu
,
L.
,
Lu
,
H.
, and
Wang
,
M.
,
2020
, “
Passive Separation Control With Blade-End Slots in a Highly Loaded Compressor Cascade
,”
AIAA J.
,
58
(
1
), pp.
85
97
.
27.
Tang
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2019
, “
Evaluation of Compressor Blading With Blade End Slots and Full-Span Slots in a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
12
), p.
121002
.
28.
Rockenbach
,
R. W.
,
1968
, “
Single Stage Experimental Evaluation of Slotted Rotor and Stator Blading, Part IX—Final Report
,” NASA CR-54553.
29.
Rockenbach
,
R. W.
,
Brent
,
J. A.
, and
Jones
,
B. A.
,
1970
, “Single Stage Experimental Evaluation of Compressor Blading With Slots and Vortex Generators, Part I—Analysis and Design of Stages 4 and 5,” NASA CR-72626.
30.
Wennerstrom
,
A. J.
,
1987
, “
Some Experiments With a Supersonic Axial Compressor Stage
,”
ASME J. Turbomach.
,
109
(
3
), pp.
388
397
.
31.
Hu
,
J.
,
Wang
,
R.
,
Li
,
R.
, and
Wu
,
P.
,
2017
, “
Effects of Slot Jet and Its Improved Approach in a High-Load Compressor Cascade
,”
Exp. Fluids
,
58
(
11
), p.
155
.
32.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2017
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061101
.
33.
Dawkins
,
I.
,
Taylor
,
J.
,
Ottavy
,
X.
, and
Miller
,
R.
,
2022
, “
The Unsteady Topology of Corner Separations
,”
ASME J. Turbomach.
,
144
(
11
), p.
111001
.
34.
Yan
,
H.
,
Liu
,
Y.
, and
Lu
,
L.
,
2019
, “
Turbulence Anisotropy Analysis in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
91
, pp.
241
254
.
35.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
36.
Wang
,
H.
,
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2017
, “
Entropy Analysis of the Interaction Between the Corner Separation and Wakes in a Compressor Cascade
,”
Entropy
,
19
(
7
), p.
324
.
37.
Jin
,
Y.
,
Li
,
C.
,
Du
,
J.
, and
Zhang
,
H.
,
2022
, “
Effects of End-Walls on Flows in a Highly Loaded Compressor Cascade With Double-Circular-Arc Blades
,”
Phys. Fluids
,
34
(
5
), p.
055124
.
38.
Zhong
,
W.
,
Liu
,
Y.
, and
Tang
,
Y.
,
2024
, “
Unsteady Flow Structure of Corner Separation in a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
146
(
3
), p.
031003
.
39.
Monier
,
J.-F.
,
Gao
,
F.
,
Boudet
,
J.
, and
Shao
,
L.
,
2020
, “
Turbulence Modelling Analysis in a Corner Separation Flow
,”
Comput. Fluids
,
213
, p.
104745
.
40.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2021
, “
High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses
,”
ASME J. Turbomach.
,
143
(
9
), p.
091002
.
41.
Wang
,
T.
,
Zhao
,
Y.
,
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2023
, “
Direct Numerical Simulation of a High-Pressure Turbine Stage: Unsteady Boundary Layer Transition and the Resulting Flow Structures
,”
ASME J. Turbomach.
,
145
(
12
), p.
121009
.
42.
Liu
,
Q.
,
Ager
,
W.
,
Hall
,
C.
, and
Wheeler
,
A. P.
,
2022
, “
Low Reynolds Number Effects on the Separation and Wake of a Compressor Blade
,”
ASME J. Turbomach.
,
144
(
10
), p.
101008
.
43.
Spalart
,
P. R.
,
2014
, “
Philosophies and Fallacies in Turbulence Modeling
,”
Prog. Aerosp. Sci.
,
74
, pp.
1
15
.
44.
Liu
,
Y.
,
Xie
,
N.
,
Tang
,
Y.
, and
Zhang
,
Y.
,
2022
, “
Investigation of Hemocompatibility and Vortical Structures for a Centrifugal Blood Pump Based on Large Eddy Simulation
,”
Phys. Fluids
,
34
(
11
), p.
115111
.
45.
Xie
,
N.
,
Tang
,
Y.
, and
Liu
,
Y.
,
2023
, “
High-Fidelity Numerical Simulation of Unsteady Cavitating Flow Around a Hydrofoil
,”
J. Hydrodyn.
,
35
(
1
), pp.
1
16
.
46.
Wang
,
G.
, and
Liu
,
Y.
,
2022
, “
A Grid-Adaptive Simulation Model for Turbulent Flow Predictions
,”
Phys. Fluids
,
34
(
7
), p.
075125
.
47.
Tang
,
Y.
,
Wei
,
X.
, and
Liu
,
Y.
,
2024
, “
Hybrid RANS-LES Simulation of Rotor-Stator Interaction in a Compressor Stage Using Grid-Adaptive Simulation Method
,”
ASME J. Turbomach.
,
147
(
7
), p.
071001
.
48.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Trojak
,
W.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P. G.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aeosp. Sci.
,
110
, p.
100554
.
49.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
50.
Xia
,
G.
,
Medic
,
G.
, and
Praisner
,
T. J.
,
2018
, “
Hybrid RANS/LES Simulation of Corner Stall in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
140
(
8
), p.
081004
.
51.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.
52.
Taira
,
K.
,
Hemati
,
M. S.
,
Brunton
,
S. L.
,
Sun
,
Y.
,
Duraisamy
,
K.
,
Bagheri
,
S.
,
Dawson
,
S. T. M.
, and
Yeh
,
C.
,
2020
, “
Modal Analysis of Fluid Flows: Applications and Outlook
,”
AIAA J.
,
58
(
3
), pp.
998
1022
.
53.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
54.
An
,
G.
,
Wu
,
Y.
,
Lang
,
J.
,
Chen
,
Z.
, and
Zhou
,
X.
,
2022
, “
Investigation of Flow Unsteadiness in a Highly-Loaded Compressor Cascade Using a Dynamic Mode Decomposition Method
,”
Chin. J. Aeronaut.
,
35
(
5
), pp.
275
290
.
55.
Li
,
R.
,
Gao
,
L.
,
Ma
,
C.
,
Lin
,
S.
, and
Zhao
,
L.
,
2020
, “
Corner Separation Dynamics in a High-Speed Compressor Cascade Based on Detached-Eddy Simulation
,”
Aerosp. Sci. Technol.
,
99
, p.
105730
.
56.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids
,
26
(
2
), p.
024103
.
57.
Tucker
,
P. G.
,
2014
,
Unsteady Computational Fluid Dynamics in Aeronautics
,
Springer
,
Dordrecht, The Netherlands
.
58.
Liu
,
Y.
,
Zhong
,
W.
, and
Tang
,
Y.
,
2021
, “
On the Relationships Between Different Vortex Identification Methods Based on Local Trace Criterion
,”
Phys. Fluids
,
33
(
10
), p.
105116
.
59.
Liu
,
C.
,
Gao
,
Y.
,
Tian
,
S.
, and
Dong
,
X.
,
2018
, “
Rortex—A New Vortex Vector Definition and Vorticity Tensor and Vector Decompositions
,”
Phys. Fluids
,
30
(
1
), p.
035103
.
60.
Tian
,
S.
,
Gao
,
Y.
,
Dong
,
X.
, and
Liu
,
C.
,
2018
, “
Definitions of Vortex Vector and Vortex
,”
J. Fluid Mech.
,
849
, pp.
312
339
.
61.
Gao
,
Y.
, and
Liu
,
C.
,
2018
, “
Rortex and Comparison With Eigenvalue-Based Vortex Identification Criteria
,”
Phys. Fluids
,
30
(
8
), p.
085107
.
62.
Jovanovic
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
,
2023
, “DMDSP—Sparsity-Promoting Dynamic Mode Decomposition,” http://www.ece.umn.edu/users/mihailo//software/dmdsp/
You do not currently have access to this content.