Abstract

One of the major applications of the adjoint method is the improvement in the order of accuracy of integral quantities obtained from CFD simulations. Although the theory requires the use of a smooth interpolation of the solution, this has seldom been used with unstructured finite volume solvers. In this paper, the adjoint based correction is applied to output functionals obtained using finite volume method on unstructured meshes. A smoothing spline based on a C1continuous representation of the discrete solution is employed to reduce the random noise in the solution and to improve the rate of convergence of the derivatives. Tests performed on randomly perturbed meshes in 1-D showed fourth-order convergence of output functionals obtained from second-order solution, corrected using the truncation error obtained using the smoothing spline and second-order accurate adjoint solution. The extension of this method to 2-D problems showed superconvergence for output functionals and improvements over existing results.

References

1.
Pierce
,
N. A.
, and
Giles
,
M. B.
,
2000
, “
Adjoint Recovery of Superconvergent Functionals From PDE Approximations
,”
SIAM Rev.
,
42
(
2
), pp.
247
264
.10.1137/S0036144598349423
2.
Sharbatdar
,
M.
, and
Ollivier-Gooch
,
C. F.
,
2013
, “
Eigenanalysis of Truncation and Discretization Error on Unstructured Meshes
,”
21st AIAA Computational Fluid Dynamics Conference
, AIAA Paper No. 2013-3089.10.2514/6.2013-3089
3.
Sharbatdar
,
M.
,
Jalali
,
A.
, and
Ollivier-Gooch
,
C.
,
2016
, “
Smoothed Truncation Error in Functional Error Estimation and Correction Using Adjoint Methods in an Unstructured Finite Volume Solver
,”
Comput. Fluids
,
140
, pp.
406
421
.10.1016/j.compfluid.2016.10.019
4.
Giles
,
M. B.
,
Pierce
,
N.
, and
Süli
,
E.
,
2004
, “
Progress in Adjoint Error Correction for Integral Functionals
,”
Comput. Visualization Sci.
,
6
(
2–3
), pp.
113
121
.10.1007/s00791-003-0115-y
5.
Giles
,
M.
, and
Pierce
,
N. A.
,
2001
, “
Analysis of Adjoint Error Correction for Superconvergent Functional Estimates
,” Oxford University, Oxford, UK, Computing Laboratory Report NA 01/14.
6.
Sharbatdar
,
M.
,
2017
, “
Error Estimation and Mesh Adaptation Paradigm for Unstructured Mesh Finite Volume Methods
,” Ph.D. dissertation,
Mechanical Engineering Department, University of British Columbia
,
Vancouver, BC
.
7.
Pierce
,
N. A.
, and
Giles
,
M. B.
,
2004
, “
Adjoint and Defect Error Bounding and Correction for Functional Estimates
,”
J. Comput. Phys.
,
200
(
2
), pp.
769
794
.10.1016/j.jcp.2004.05.001
8.
Giles
,
M.
, and
Pierce
,
N.
,
1999
, “
Improved Lift and Drag Estimates Using Adjoint Euler Equations
,” 14th Computational Fluid Dynamics Conference,
AIAA
Paper No. 99-3293.10.2514/6.99-3293
9.
Oehlert
,
G. W.
,
1992
, “
Relaxed Boundary Smoothing Splines
,”
Ann. Stat.
,
20
(
1
), pp.
146
160
.10.1214/AOS/1176348516
10.
Cox
,
D. D.
,
1984
, “
Multivariate Smoothing Spline Functions
,”
SIAM J. Numer. Anal.
,
21
(
4
), pp.
789
813
.10.1137/0721053
11.
De Boor
C.
,
1978
,
A Practical Guide to Splines
,
Springer Verlag
,
New York
.
12.
Tyson
,
W. C.
,
Roy
,
C. J.
, and
Ollivier Gooch
,
C. F.
,
2019
, “
A Novel Reconstruction Technique for Finite Volume Truncation Error Estimation
,” AIAA Paper No. AIAA-2019-2174 10.2514/6.AIAA-2019-2174.
13.
Reinsch
,
C. H.
,
1967
, “
Smoothing by Spline Functions
,”
Numerische Math.
,
10
(
3
), pp.
177
183
.10.1007/BF02162161
14.
Argyris
,
J. H.
,
Fried
,
I.
, and
Scharpf
,
D. W.
,
1968
, “
The TUBA Family of Plate Elements for the Matrix Displacement Method
,”
Aeronaut. J.
,
72
(
692
), pp.
701
709
.10.1017/S000192400008489X
15.
Masayuki
,
O.
,
1993
, “
Full-Explicit Interpolation Formulas for the Argyris Triangle
,”
Comput. Methods Appl. Mech. Eng.
,
106
(
3
), pp.
381
394
.10.1016/0045-7825(93)90096-G
16.
Barth
,
T. J.
,
1993
, “
Recent Developments in High Order K-Exact Reconstruction on Unstructured Meshes
,” 31st Aerospace Sciences Meeting,
AIAA
Paper No. AIAA-93-0668.10.2514/6.AIAA-93-0668
17.
Ollivier-Gooch
,
C.
, and
Van Altena
,
M.
,
2002
, “
A High-Order-Accurate Unstructured Mesh Finite Volume Scheme for the Advection–Diffusion Equation
,”
J. Comput. Phys.
,
181
(
2
), pp.
729
752
.10.1006/jcph.2002.7159
18.
Giles
,
M.
, and
Pierce
,
N.
,
1997
, “
Adjoint Equations in CFD - Duality, Boundary Conditions and Solution Behaviour
,” 13th Computational Fluid Dynamics Conference,
AIAA
Paper No. AIAA-97-1850.10.2514/6.AIAA-97-1850
19.
Hayashi
,
M.
,
Ceze
,
M.
, and
Volpe
,
E.
,
2010
, “
Characteristics-Based Boundary Conditions for the Euler Adjoint Problem: 2D Formulation
,”
28th AIAA Applied Aerodynamics Conference
, AIAA Paper No. 2010-4677.10.2514/6.2010-4677
You do not currently have access to this content.