Abstract

Much of the effort in improving the accuracy of computational fluid dynamics (CFD) simulations is focused on mesh refinement and adaptation although studies have shown that the use of high-order methods are more efficient in improving accuracy. Stability issues, complexity of implementation, and demand of computational resources are some of the key factors hindering the use of high-order methods in commercial CFD solvers. This paper demonstrates an improvement in the order of accuracy of finite volume solutions on unstructured meshes without using a high-order solver. Defect correction and the error transport equation method are the techniques discussed, along with the method for obtaining an appropriate estimate of the truncation error, which is crucial in both these techniques. Methods to obtain high-order interpolation of the control volume averages and high-order integral functionals along curved boundaries are also discussed. Third-order accurate results are obtained for a variety of problems, including the 2D Euler equations, without using a third-order discretization scheme.

References

1.
Drikakis
,
D.
, and
Asproulis
,
N.
,
2011
, “
Quantification of Computational Uncertainty for Molecular and Continuum Methods in Thermo-Fluid Sciences
,”
ASME Appl. Mech. Rev.
,
64
(
4
), p.
040801
.10.1115/1.4006213
2.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, Cambridge, UK.
3.
Mosedale
,
A.
, and
Drikakis
,
D.
,
2007
, “
Assessment of Very High Order of Accuracy in Implicit LES Models
,”
ASME J. Fluids Eng.
,
129
(
12
), pp.
1497
1503
.10.1115/1.2801374
4.
Kokkinakis
,
I. W.
, and
Drikakis
,
D.
,
2015
, “
Implicit Large Eddy Simulation of Weakly-Compressible Turbulent Channel Flow
,”
Comput. Methods Appl. Mech. Eng.
,
287
, pp.
229
261
.10.1016/j.cma.2015.01.016
5.
Jalali
,
A.
, and
Ollivier-Gooch
,
C.
,
2017
, “
Higher-Order Unstructured Finite Volume RANS Solution of Turbulent Compressible Flows
,”
Comput. Fluids
,
143
, pp.
32
47
.10.1016/j.compfluid.2016.11.004
6.
Ollivier-Gooch
,
C.
,
Nejat
,
A.
, and
Michalak
,
K.
,
2009
, “
Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations
,”
AIAA J.
,
47
(
9
), pp.
2105
2120
.10.2514/1.40585
7.
Giles
,
M.
, and
Pierce
,
N.
,
1999
, “
Improved Lift and Drag Estimates Using Adjoint Euler Equations
,”
AIAA
Paper No. 99-3293.10.2514/6.99-3293
8.
Giles
,
M.
, and
Pierce
,
N.
,
1997
, “
Adjoint Equations in CFD—Duality, Boundary Conditions and Solution Behaviour
,”
AIAA
Paper No. 97-1850.10.2514/6.97-1850
9.
Pereyra
,
V.
,
1966
, “
On Improving an Approximate Solution of a Functional Equation by Deferred Corrections
,”
Numer. Math. (Heidelberg)
,
8
(
4
), pp.
376
391
.10.1007/BF02162981
10.
Stetter
,
H. J.
,
1978
, “
The Defect Correction Principle and Discretization Methods
,”
Numer. Math. (Heidelberg)
,
29
(
4
), pp.
425
443
.10.1007/BF01432879
11.
Böhmer
,
K.
,
Hemker
,
P. W.
, and
Stetter
,
H. J.
,
1984
, “
The Defect Correction Approach
,”
Defect Correction Methods: Theory and Applications
,
K.
Böhmer
and
H. J.
Stetter
, eds.,
Springer, Vienna
,
Austria
, pp.
1
32
.
12.
Zhang
,
X. D.
,
Trépanier
,
J.-Y.
, and
Camarero
,
R.
,
2000
, “
A Posteriori Error Estimation for Finite Volume Solutions of Hyperbolic Conservation Laws
,”
Comput. Methods Appl. Mech. Eng.
,
185
(
1
), pp.
1
19
.10.1016/S0045-7825(99)00099-7
13.
Ilinca
,
C.
,
Zhang
,
X. D.
,
Trépanier
,
J.-Y.
, and
Camarero
,
R.
,
2000
, “
A Comparison of Three Error Estimation Techniques for Finite Volume Solutions of Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
4
), pp.
1277
1294
.10.1016/S0045-7825(99)00377-1
14.
Hay
,
A.
, and
Visonneau
,
M.
,
2006
, “
Error Estimation Using the Error Transport Equation for Finite Volume Methods and Arbitrary Meshes
,”
Int. J. Comput. Fluid Dyn.
,
20
(
7
), pp.
463
479
.10.1080/10618560600835934
15.
Pierce
,
N. A.
, and
Giles
,
M. B.
,
2000
, “
Adjoint Recovery of Superconvergent Functionals From PDE Approximations
,”
SIAM Rev.
,
42
(
2
), pp.
247
264
.10.1137/S0036144598349423
16.
Giles
,
M. B.
,
Pierce
,
N.
, and
Süli
,
E.
,
2004
, “
Progress in Adjoint Error Correction for Integral Functionals
,”
Comput. Visualization Sci.
,
6
(
2–3
), pp.
113
121
.10.1007/s00791-003-0115-y
17.
Sharbatdar
,
M.
, and
Ollivier-Gooch
,
C.
,
2018
, “
Adjoint-Based Functional Correction for Unstructured Mesh Finite Volume Methods
,”
J. Sci. Comput.
,
76
(
1
), pp.
1
23
.10.1007/s10915-017-0611-8
18.
Pierce
,
N. A.
, and
Giles
,
M. B.
,
2004
, “
Adjoint and Defect Error Bounding and Correction for Functional Estimates
,”
J. Comput. Phys.
,
200
(
2
), pp.
769
794
.10.1016/j.jcp.2004.05.001
19.
Phillips
,
T.
, and
Roy
,
C. J.
,
2014
, “
Defect Correction and Error Transport Discretization Error Estimation for Applications in CFD
,”
AIAA
Paper No. 2014-2572.10.2514/6.2014-2572
20.
Celik
,
I.
, and
Hu
,
G.
,
2004
, “
Single Grid Error Estimation Using Error Transport Equation
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
778
790
.10.1115/1.1792254
21.
Tyson
,
W. C.
,
Roy
,
C. J.
, and
Ollivier Gooch
,
C. F.
,
2019
, “
A Novel Reconstruction Technique for Finite Volume Truncation Error Estimation
,”
AIAA
Paper No. 2019-2174.10.2514/6.2019-2174
22.
Sharbatdar
,
M.
, and
Ollivier-Gooch
,
C. F.
,
2013
, “
Eigenanalysis of Truncation and Discretization Error on Unstructured Meshes
,”
AIAA
Paper No. 2013-3089.10.2514/6.2013-3089
23.
Barth
,
T. J.
,
1993
, “
Recent Developments in High Order K-Exact Reconstruction on Unstructured Meshes
,”
AIAA
Paper No. 93-668.10.2514/6.93-668
24.
Ollivier-Gooch
,
C.
, and
Van Altena
,
M.
,
2002
, “
A High-Order-Accurate Unstructured Mesh Finite Volume Scheme for the Advection–Diffusion Equation
,”
J. Comput. Phys.
,
181
(
2
), pp.
729
752
.10.1006/jcph.2002.7159
25.
Nishikawa
,
H.
,
2010
, “
Beyond Interface Gradient: A General Principle for Constructing Diffusion Schemes
,”
AIAA
Paper No. 2010-5093.10.2514/6.2010-5093
26.
Roe
,
P. L.
,
1986
, “
Characteristic-Based Schemes for the Euler
,”
Annu. Rev. Fluid Mech.
,
18
(
1
), pp.
337
365
.10.1146/annurev.fl.18.010186.002005
27.
Yan
,
G.
,
2018
, “
Numerical Estimation of Discretization Error on Unstructured Meshes
,”
Ph.D. dissertation
,
Mechanical Engineering Department, University of British Columbia
,
Vancouver, BC, Canada
.https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0364237
28.
Banks
,
J. W.
,
Hittinger
,
J. A. F.
,
Connors
,
J. M.
, and
Woodward
,
C. S.
,
2012
, “
Numerical Error Estimation for Nonlinear Hyperbolic PDEs Via Nonlinear Error Transport
,”
Comput. Methods Appl. Mech. Eng.
,
213–216
, pp.
1
15
.10.1016/j.cma.2011.11.021
29.
Jayasankar
,
A.
, and
Ollivier-Gooch
,
C.
,
2025
, “
Adjoint Error Correction on Unstructured Finite Volume Solvers
,”
ASME J. Verif. Valid. Uncertainty Quantif.
, pp.
1
28
(accepted).10.1115/1.4067686
30.
Sharbatdar
,
M.
,
Jalali
,
A.
, and
Ollivier-Gooch
,
C.
,
2016
, “
Smoothed Truncation Error in Functional Error Estimation and Correction Using Adjoint Methods in an Unstructured Finite Volume Solver
,”
Comput. Fluids
,
140
, pp.
406
421
.10.1016/j.compfluid.2016.10.019
31.
Masayuki
,
O.
,
1993
, “
Full-Explicit Interpolation Formulas for the Argyris Triangle
,”
Comput. Methods Appl. Mech. Eng.
,
106
(
3
), pp.
381
394
.10.1016/0045-7825(93)90096-G
You do not currently have access to this content.