Recent technological advances in microfabrication and fiber optics have made practical the construction of very small, sensitive sensors for acoustic or vibration measurements. As the sensitivity is increased or the size is decreased, a sensor becomes more susceptible to mechanical noise resulting from molecular agitation. Traditional noise analysis is often focused exclusively on electrical or optical noise; consequently, mechanical-thermal noise may not be considered in new types of sensors until the prototype testing reveals an unexpectedly high noise floor. Fortunately, mechanical-thermal noise is relatively easy to estimate early in the design process because the equivalent noise force is only a function of the temperature and the mechanical losses in the sensor There are a number of specific techniques that are applicable for evaluating either the total mechanical-thermal noise or the spectral distribution of that noise for simple or complex sensors. These techniques are presented and, in addition, a summary of other noise components is given in the context of design guidelines for high-sensitivity sensors.

1.
Agrawal, G., 1991, “Noise in Semiconductor Lasers and Its Impact on Optical Communication Systems,” Laser Noise, Rajarshi Roy, ed., Proc. SPIE, Vol. 1376, pp. 224–235.
2.
Anderson, H., ed., 1989, A Physicist’s Desk Reference, American Institute of Physics, New York.
3.
Bergqvist, J., Rudolf, F., Maisana, J., Parodi, F., and Rossi, M., 1991, “A Silicon Condenser Microphone with a Highly Perforated Backplate,” 1991 Int. Conf. on Solid-State Sensors and Actuators, Dig. Tech. Papers, New York, IEEE, pp. 266–269.
4.
Bernstein, J., 1992, “A Micromachined Condenser Hydrophone,” presented at the IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 21–25.
5.
Braddick, H., 1966, The Physics of Experimental Method, Chapman and Hall, London.
6.
Callen
H.
, and
Welton
T.
,
1951
, “
Irreversibility and Generalized Noise
,”
Phys. Rev.
, Vol.
83
, pp.
34
40
.
7.
Dandridge
A.
,
Tveten
A.
,
Miles
R.
,
Jackson
D.
, and
Giallorenzi
T.
,
1981
, “
Single-Mode Diode Laser Phase Noise
,”
Appl. Phys. Lett.
, Vol.
38
, pp.
77
78
.
8.
Fenchel
T.
, and
Finlay
B.
,
1984
, “
Geotaxis in the Ciliated Protozoan Loxodes
,”
J. Exp. Biol.
, Vol.
110
, pp.
17
33
.
9.
Gabrielson
T.
,
1993
, “
Mechanical-Thermal Noise in Micromachined Acoustic and Vibration Sensors
,”
IEEE Trans. Electron Devices
, Vol.
40
, pp.
903
909
.
10.
Gardner
D.
,
Hofler
T.
,
Baker
S.
,
Yarber
R.
, and
Garrett
S.
,
1987
, “
A Fiber-Optic Interferometric Seismometer
,”
J. Lightwave Tech.
, Vol.
LT-5
, p.
953
953
.
11.
Gray, P., 1967, Introduction to Electronics, Wiley, New York.
12.
He
G.
, and
Cuomo
F.
,
1992
, “
The Analysis of Noises in a Fiber Optic Microphone
,”
J. Acoust. Sac. Am.
, Vol.
92
, pp.
2521
2526
.
13.
Henrion, W., DiSanza, L., Ip, M., Terry, S., and Jerman, H., 1990, “Wide Dynamic Range Direct Digital Accelerometer,” 1990 Solid-State Sensor and Actuator Workshop, Tech. Dig., New York, IEEE, pp. 153–157.
14.
Henry
C.
,
1986
, “
Phase Noise in Semiconductor Lasers
,”
J. Lightwave Tech.
, Vol.
LT-4
, pp.
298
311
.
15.
Hofler
T.
, and
Garrett
S.
,
1988
, “
Thermal Noise in a Fiber Optic Sensor
,”
J. Acoust. Soc. Am.
, Vol.
84
, pp.
471
475
.
16.
Hohm
D.
, and
Hess
G.
,
1989
, “
A Subminiature Condenser Microphone with Silicon Nitride Member and Silicon Backplate
,”
J. Acoust. Soc. Am.
, Vol.
85
, pp.
476
480
.
17.
Horowitz, P., and Hill, W., 1989, The Art of Electronics, 2nd ed., Cambridge University Press, New York.
18.
Kinsler, L., Frey, A., Coppens, A., and Sanders, J., 1982 Fundamentals of Acoustics, 3rd. ed., Wiley, New York.
19.
Kittel, C., 1958, Elementary Statistical Physics, Wiley, New York.
20.
Ku¨hnel
W.
, and
Hess
G.
,
1992
, “
Micromachined Subminiature Condenser Microphone in Silicon
,”
Sensors and Actuators A
, Vol.
32
, pp.
560
564
.
21.
Lax, M., 1991, “The Theory of Laser Noise,” Laser Noise, Rajarshi Roy, ed., Proc. SPIE, Vol. 1376, pp. 2–20.
22.
Marton, L., and Hornyak, W., 1969, Methods of Experimental Physics, Vol. 8, Academic Press, New York.
23.
Mellon
R.
,
1952
, “
The Thermal Noise Limit in the Detection of Underwear Acoustic Signals
,”
J. Acoust. Soc. Am.
, Vol.
24
, pp.
478
480
.
24.
Misner, C., Thorne, K., and Wheeler, J., 1973, Gravitation, Freeman, NY.
25.
Petersen
K.
,
Shartel
A.
, and
Raley
N.
,
1982
, “
Micromechanical Accelerometer Integrated with MOS Detection Circuitry
,”
IEEE Trans. Electron Devices
, Vol.
ED-29
, pp.
23
27
.
26.
Pippard, A., 1989, The Physics of Vibration, Cambridge University Press, New York.
27.
Press
W.
,
1978
, “
Flicker Noises in Astronomy and Elsewhere
,”
Comments on Astrophysics
, Vol.
7
, pp.
103
119
.
28.
Rockstad, H., Kenny, T., Reynolds, J., Kaiser, W., and Gabrielson, T., 1992, “A Miniature High-Sensitivity Broad-Band Accelerometer Based on Electron Tunneling Transducers,” DSC Vol. 40, D. Cho, J., Peterson, A Pisano, and C. Friedrich, eds., ASME, pp. 41–52.
29.
Roylance
L.
, and
Angell
J.
,
1979
, “
A Batch-Fabricated Silicon Accelerometer
,”
IEEE Trans. Electron Devices
, Vol.
ED-26
, pp.
1911
1917
.
30.
Siliconix, 1991, Low Power Discretes Data Book, Siliconix Inc., Santa Clara, CA.
31.
Skvor
Z.
,
1967
/1968
, “
On the Acoustical Resistance Due to Viscous Losses in the Air Gap of Electrostatic Transducers
,”
Acustica
, Vol.
19
, pp.
295
299
.
32.
Starr, J., 1990, “Squeeze-Film Damping in Solid-State Accelerometers,” 1990 Solid-State Sensor and Actuator Workshop, Tech. Dig., IEEE, NY.
33.
Tuinenga, P., 1988, SPICE: A Guide to Circuit Simulation and Analysis Using PSpice, Prentice-Hall, Englewood Cliffs, NJ.
34.
Uhlenbeck
G.
, and
Goudsmit
S.
,
1929
, “
A Problem in Brownian Motion
,”
Phys. Rev.
, Vol.
34
, pp.
145
151
.
35.
Uhlenbeck
G.
, and
Ornstein
L.
,
1930
, “
On the Theory of the Brownian Motion
,”
Phys. Rev.
, Vol.
36
, pp.
823
841
.
36.
Weissman
M.
,
1988
, “
1/f Noise and Other Slow, Nonexponential Kinetics in Condensed Matter
,”
Rev. Mod. Phys.
, Vol.
60
, pp.
537
571
.
37.
Wood
T.
,
Linke
R.
,
Kasper
B.
, and
Carr
E.
,
1988
, “
Observation of Coherent Rayleigh Noise in Single-Source Bidirectional Optical Fiber Systems
,”
J. Lightwave Tech.
, Vol.
LT-6
, pp.
346
351
.
This content is only available via PDF.
You do not currently have access to this content.